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Abstract 

Representation of semantic knowledge is an important aspect of cognitive 

function. The processing of concrete (e.g., book) and abstract (e.g., freedom) semantic 

concepts show systematic differences on various behavioral measures in both healthy and 

clinical populations. However, previous studies examining the difference in the neural 

substrates correlating with abstract and concrete concept representations have reached 

inconsistent conclusions. This dissertation used multiple novel data analyses approaches 

on functional magnetic resonance imaging (fMRI) data, to investigate representational 

differences of abstract and concrete concepts and to provide converging evidence that the 

representations of abstract and concrete semantic knowledge in the brain rely on different 

mechanisms.  

Study 1 used meta-analysis method on a combined sample of 303 participants to 

quantitatively summarize the published neuroimaging studies on the brain regions with 

category-specific activations. Results suggested greater engagement of working memory 

and language system for processing abstract concepts, and greater engagement of the 

visual perceptual system for processing of concrete concepts, likely via mental imagery. 

Study 2 showed successful identifications of single trial fMRI data as being associated 

with the processing of either abstract or concrete concepts based on multivoxel activity 

patterns in widespread brain areas, suggesting that abstract vs. concrete differences were 

represented by multiple mechanisms. Study 3 investigated the classification based on 

condition-specific connectivity patterns. Results showed successful identifications of the
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connectivity patterns as abstract or concrete for an individual based on the connectivity 

patterns of other individuals, both by the connectivity for a priory selected seed regions 

as well as by the whole-brain voxel-by-voxel connectivity patterns. The results indicated 

the existence of condition-specific connectivity patterns that were consistent across 

individuals on a whole-brain scale. Moreover, the results also suggested the 

representation of abstract and concrete concepts differs from the semantic association 

perspective in addition to differences on coding forms. Study 4 illustrated the application 

of MVPA as a cross-modal prediction approach, which is a promising method for further 

investigation of semantic knowledge representation in the brain, by investigating the role 

of general semantic system on person-specific knowledge.  

Overall, the work described in this dissertation provides converging evidence of 

the representational difference between abstract and concrete concepts. The differences 

are suggested to occur at various levels, including the dependence on modality-specific 

perceptual systems, the organization of associations among different semantic-related 

systems, and the difficulty and strategy of retrieving contextual information.  
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Chapter 1 

Introduction 

Representations of concrete and abstract concepts in the brain are relevant to 

understanding language function in both healthy and clinical populations (Eviatar, Menn, 

& Zaidel, 1990; Kuperberg, West, Lakshmanan, & Goff, 2008; Mervis & John, 2008). 

The concreteness of a semantic concept is commonly defined as the extent to which a 

word refers to features of objects that can be sensually experienced. Concepts that are 

associated with physical entities are regarded as concrete, while those associated with 

mental events are regarded as abstract.  

Neuropsychological studies have motivated important proposals on the 

organization principles of concepts, while the introduction of neuroimaging techniques 

has largely facilitated the investigations on the functional architecture of conceptual 

representations. The large body of neuropsychological and neuroimaging literature treats 

the two categories of concepts separately, investigating either the organizations of 

knowledge about concrete concepts, or the overall difference between abstract and 

concrete concept representations. The main studies reported in this dissertation focused 

on the latter aspect. The current chapter will first selectively review several prevailing 

theories and the empirical neuroimaging evidence on both the representation of concrete 

concepts and its difference from the representation of abstract concepts, to offer a context 

of the following chapters in this dissertation.
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1.1. Organization of concrete concepts in the brain 

1.1.1. Neuropsychological motivations and theories 

The conceptual knowledge about objects constitutes a significant proportion of 

the concrete concepts. Our knowledge about objects is largely acquired through direct 

experience of the material world (Bloom, 2000). The organization of these concepts is 

unlikely to be the mere mapping of taxonomies based on definitions (Rosch, 1975).The 

way we perceive, interpret, or interact with objects during knowledge acquisition or later 

daily experience may influence the representations of object concepts in the brain.  

Studies on the neural representation of object concepts have been largely motivated by 

cases of brain-damaged patients with category-specific semantic deficits (e.g., 

Warrington & McCarthy, 1983; Warrington & Shallice, 1984). The development of 

theories on concept organization is tightly linked to the observations of selective 

impairments of object knowledge in either living or nonliving (mostly manmade objects) 

domain. These theories fall into several classes, as is discussed below. 

Domain-based views 

Since the first reported cases of living/nonliving dissociation (see Forde & 

Humphreys, 1999 for an overview), the straightforward account that concepts for 

different categories are represented in separate components of the conceptual knowledge 

system has been one of the mostly studied proposals. The domain-specific hypothesis 

(Caramazza & Shelton, 1998) assumes that object domain provides the first-order 

principle of the organization of information in conceptual system. Moreover, the 

category-specificity should be observed not only in the semantic but also in the 

perceptual areas in the brain (Mahon & Caramazza, 2009). Natural selection pressure has 
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been reflected in the specialized neural circuits for processing evolutionarily significant 

semantic categories, such as living animate, living inanimate, conspecifics, and tools. 

This view has been found to be compatible with a large number of cases of category-

specific deficits (Capitani, Laiacona, Mahon, & Caramazza, 2003). A limitation of this 

theory lies in the criticism of not being panoramic: because the candidate semantic 

categories are limited to those with evolution-related history, and because further 

hypotheses are needed to specify the rules governing information within these broad 

semantic domains (Caramazza & Shelton, 1998), the domain-specific model cannot be 

the exclusive constraint on conceptual knowledge representation in the brain.  

From property-based to modality-specific views 

A second line of theories assumes the category-specific deficits reflect the relative 

importance of different attributes to different objects. The sensory/functional hypothesis 

assumes sensory and functional properties are stored separately in the brain (Warrington 

& Shallice, 1984). If knowledge of sensory features is critical to concepts in the living 

domain, whereas knowledge of functions is more important to the nonliving domain, the 

disproportionate impairments can be attributed to the disruption of one of the modalities. 

Neuropsychological predictions according to this hypothesis will be (1) selective 

impairments for knowledge of certain type of property will be observed; (2) the 

knowledge impairments for a type of property will co-occur with the impairments of 

selective categories of objects that are most reliant on that type of property; and (3) 

category-specific deficits may also occur in the categories across living/nonliving 

boundaries as long as the impaired property knowledge is supposedly critical to the 

category, for example, the sensory knowledge impairments may result in the loss of 
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knowledge about musical instruments or food in addition to the broad classes of living 

things (Warrington & Shallice, 1984).  

Supportive neuropsychological evidence for this hypothesis has been found (e.g., 

Basso, Capitani, & Laiacona, 1988; De Renzi & Lucchelli, 1994). However, the observed 

relations between the knowledge about property and about category are not always as 

predicted. For example, Lambon Ralph et al. (1998) reported a patient with impaired 

visual knowledge across living and nonliving domains but without a category-specific 

deficit for living things. Such case suggests the existence of sensory/functional 

dissociation, but it is at least insufficient to predict the living/nonliving dissociation. On 

the other hand, knowledge of different properties within the same modality have been 

found to be unequally damaged in some patients, such as the impairments of perceptual 

knowledge only for living things (Sartori, Job, Miozzo, Zago, & Marchiori, 1993). 

As another line of challenging evidence, some patients with category-specific deficits 

showed evenly impaired sensory and functional knowledge (Barbarotto, Capitani, & 

Laiacona, 1996; Samson, Pillon, & De Wilde, 1998). Moreover, patients with category-

specific deficits may not present selective impairments for the knowledge types that are 

assumed to be critical (Lambon Ralph, et al., 1998). Such evidence might be a 

falsification to the sensory/functional hypothesis, because the impairment of property 

knowledge is shown to be unnecessary to the occurrence of category-specific impairment. 

However, it is also possible that the critical property to a given category has been 

incorrectly assumed in these studies (for example, representing the concept of fruit does 

not mostly depend on color information). This alternative explanation mirrors the 

questioning about the premise of sensory/functional hypothesis: is it really the case that 
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knowing living things mainly depends on sensory information while knowing nonliving 

things relies on their functions? Although behavioral studies such as Cree and McRae 

(2003) have identified the most salient knowledge type for a given category of object 

based on features produced by participants, the explicitly verbalized features may not 

reflect the properties, if they exist, that guide the concept representation. Moreover, it is 

unclear how the “importance” of a property is defined. The definitive properties for a 

category are not necessarily the most featured properties for identifying its members. 

Despite these questions, the hypothesis of a sensory/functional dissociation 

reflects a general view of property-based organization of semantic knowledge. It assumes 

the meaning of a word referring to an object is learned by associating the symbol with 

other symbols referring to sensory and motor properties (Humphreys & Forde, 2001; 

Warrington & Shallice, 1984). This hypothesis is theoretically suggestive in that it relates 

the higher-level conceptual processing to the primary perceptual processes that are well 

defined, finite in number, and have relatively clearly understood processing centers in the 

brain. The hypothesis of property-based organization has been further associated with the 

embodied cognition view (Barsalou, 1999; Glenberg, 1997) by virtue of the emphases on 

perceptual and motor information in representing knowledge about objects. The recent 

interests to embodied cognition are inspired by a large body of behavioral evidence from 

healthy participants. For example, a cost of reaction time has been found when various 

semantic tasks required processing of object properties of different sensory modalities 

(Pecher, Zeelenberg, & Barsalou, 2004). Another example is the interference between 

perceptual and semantic information. The implied positions and spatial relations of 
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objects in sentences affect the performances in subsequent tasks about objects depicted 

by pictures (Stanfield & Zwaan, 2001).  

In subsequently developed hypotheses of conceptual representation along the line 

of property-based organization, the role of specific sensory modalities has been 

emphasized over the sensory vs. functional dichotomy. According to the sensory-motor 

model (Martin, 2007; Martin & Chao, 2001), knowledge about properties that comprise 

an object is stored close to the sensorimotor systems. Object properties that are invariant 

to viewpoint, size, and orientation, such as visual form, color, motion, or actions, guide 

the organization of concrete concepts. Instead of being explicitly represented, concepts 

arise from weighted activity in brain regions for processing properties.  

The connectionist approach 

A common approach of the two views discussed above is to identify functionally 

and anatomically distinct substrates for different types of semantic knowledge. An 

alternative approach is investigating concept representation from the internal structure of 

a concept, or in other words, the statistical relations between a concept and certain 

features of it. Some of the theories taking the connectionist approach (e.g., Farah & 

McClelland, 1991) draw on a multiple semantics assumption, while most of them suggest 

a unified conceptual system (Devlin, Gonnerman, Andersen, & Seidenberg, 1998; 

Gonnerman, Andersen, Devlin, Kempler, & Seidenberg, 1997; Tyler & Moss, 2001). 

This group of theories assumes that important aspects of conceptual knowledge are 

represented by semantic features. Concepts are the expressions of how various features 

are intercorrelated and how they are connected to the concepts. Therefore, the overlap of 

features can account for various relationships between concepts, such as the similarities 
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between concepts, the typicality of category membership, etc. (McClelland & Rogers, 

2003; Rips, Shoben, & Smith, 1973). 

In the context of a connectionist approach, the category-specific deficits are 

derived from differences in the structures or patterns of these feature contents. For 

example, Tyler and Moss (2001) addressed the living/nonliving dissociation by focusing 

on the facts that (1) deficits for living things are more frequently observed than those for 

nonliving things (mainly artifacts), and that (2) brain areas activated for processing living 

and nonliving concepts have considerable overlap, with arguably inconsistent regions of 

domain-specific activations. Living things have more properties, which are overall more 

intercorrelated but less distinctive than artifacts. Moreover, the relations between 

perceptual and functional properties in living things are either loose or generic across 

categories, whereas artifacts have distinctive and consistent associations between form 

and function. Therefore (and based on lesion simulations), compared to artifacts, the 

distinctive properties of living things are more vulnerable to damage, whereas the shared 

properties of living things are more resilient. This model further suggests that the 

organized conceptual system may emerge from the randomly distributed network, with 

well-defined structure for similar concepts and less so for concepts with fewer and 

loosely intercorrelated properties. The conceptual structural models have shown great 

successes in explaining the graded deficits in patients with widespread cortical damage 

(e.g., Almor et al., 2009; Silveri, Daniele, Giustolisi, & Gainotti, 1991). 

Convergence zones and hierarchical processing  

The connectionist view has provided a critical part for the models that suggest a 

distributed representation, namely how object concepts arise from the separately 
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represented knowledge about properties or features. It should be noted that the 

connection-only account is not the only group of models that attempts to address this 

question. For example, McClelland and Rogers (2003) have proposed that representation 

units that bind object properties may lie in the temporal pole. 

The convergence zones theory (Damasio, 1989; Tranel, Damasio, & Damasio, 

1997) appeals to distinct modules, i.e., convergence zones, which function as mediational 

association cortices to bind sensorimotor information and introspective states from 

various sources. The convergence zones are distributed from the posterior to the anterior 

cortical regions in a hierarchical style, with the lower-level association areas near the 

modality-specific sensorimotor areas and the higher-level association areas in the more 

anterior regions that conjoin information from the lower-level regions. These 

assumptions are in line with the research with nonhuman primates that suggests 

hierarchically structured systems for visual and auditory perceptual feature processing, 

with the more anterior regions responsible for the more complex feature conjunctions 

(Bussey, Saksida, & Murray, 2005; Tian, Reser, Durham, Kustov, & Rauschecker, 

2001).The convergence zones hypothesis has been extended and revised by Simmons and 

Barsalou (2003) to make it more compatible with the neuropsychological evidence, such 

as proposing sub-types of convergence zones that have more specialized functions for 

feature integration.  

Interim summary 

A number of theories of concrete concept representation derive from research on 

category-specific deficits. The domain-specific hypothesis assumes the local 

representation of objects by object domains. The modality-specific hypothesis assumes 
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distributed representation by sensory and motor modalities. The connectionist view 

assumes the distributed representation by semantic features. The hierarchical processing 

view assumes additional module that binds increasingly complex features. These views 

comprise the starting points of numerous empirical functional imaging studies and the 

catalysts of new hypotheses. 

1.1.2. Current understanding of conceptual representation of objects: neuroimaging 

evidence 

The existence of category-specific deficits not only tells about the deficits 

themselves in individual cases, but also inspires investigation of the general process of 

concept representation in the healthy brain. Functional neuroimaging studies on healthy 

participants have become an important complementary approach in offering evidence for 

testing and modifying the hypotheses. Compared to neuropsychological studies, 

functional imaging is less restricted by explicit behavioral performance, thus more 

straightforward to interpretation, and useful in identifying regions automatically involved 

in a given task or stimuli. Over the last decade, functional magnetic resonance imaging 

(fMRI) has become a primary tool for identifying the neural correlates of mental activity.  

Lesion and neuroimaging studies have identified a number of foci for the perception of 

object-related properties in the brain, i.e. the modality-specific areas. For example, 

besides the centers for primary processing of visual, auditory, olfactory, gustatory, tactile, 

and motor information, recognizing colors of objects has been associated with the 

posterior ventral temporal area, including the fusiform gyrus (Beauchamp, Haxby, 

Jennings, & DeYoe, 1999; Zeki & Marini, 1998). The posterior lateral part of the 

superior temporal sulcus and middle temporal gyrus is the center for integrating local 
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motion signals into the visual perception of the motion of objects (Dupont, Orban, De 

Bruyn, Verbruggen, & Mortelmans, 1994; Watson et al., 1993). Is the semantic 

knowledge about object-related properties stored in corresponding sensorimotor areas? 

Does the concept of an object emerge from these property-based regions, as the 

sensorimotor model has predicted; or are the concepts of objects organized by domains 

regardless of the sensorimotor properties? The following sections will discuss these 

questions based on evidence from neuroimaging studies.  

Modality-specific systems in semantic knowledge representation 

The relation between the sensorimotor system and object concept representation is 

one of the most critical aspects to the view of modality-specific processing. The 

intentional retrieval of sensory and motor information that is related to objects has been 

associated with brain areas that are close to or overlapping with the sites for the 

corresponding primary sensory and motor processing, including color (e.g., Hsu, 

Kraemer, Oliver, Schlichting, & Thompson-Schill, 2011; Kellenbach, Brett, & Patterson, 

2001; Martin, Haxby, Lalonde, Wiggs, & Ungerleider, 1995; Simmons et al., 2007), 

sound (Goldberg, Perfetti, & Schneider, 2006; Kellenbach, et al., 2001), touch (Goldberg, 

et al., 2006), taste (Goldberg, et al., 2006), motion and manipulation (see Martin & Chao, 

2001 for a review). These experiments have used tasks that intentionally require the 

processing of sensory or motor information, such as property verification (Is a banana 

yellow?), judgment (Choose the item whose color is most similar to the color of a 

banana), or generation (participants respond to banana with yellow). Moreover, 

unintentional but explicit tasks, such as reading words denoting object properties, also 

activated modality-specific areas, such as activations in motor cortices for action verbs 
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(Hauk, Johnsrude, & Pulvermuller, 2004) and ventral temporal cortex for words referring 

to forms and colors (Pulvermüller & Hauk, 2006). 

Although these results are often considered as supporting the view of the 

embodied representation of semantic knowledge, the exact contribution of activation in 

the modality-specific areas has been under debate. For one, the correspondence between 

sensorimotor areas and semantic stimuli is not always specific enough (see Chatterjee, 

2010 for a critical review). Second, it is not clear whether sensorimotor systems engage 

in semantic processing in an undifferentiated way. Is their involvement necessary for all 

levels of processing? Passive reading of single words may still generate additional 

processing, especially in laboratory conditions. Does the embodiment occur regardless of 

the internal context of a subject? In fact, the activations in action-related areas during 

semantic processing have been found to rely on personal motor experience (Beilock, 

Lyons, Mattarella-Micke, Nusbaum, & Small, 2008; Lyons et al., 2010).  

A related question is whether the representation of object concepts requires the 

modality-specific information that is assumed to represent object-related properties. For 

most of us, vision is perhaps the modality we rely on most to acquire information about 

and interact with the physical world. The posterior portion of the ventral temporal cortex 

along the vision pathway from the occipital cortices is involved in object recognition and 

conceptual representation. Within this area, different categories of object have been 

related to different activity profiles, as discussed below. 

Domain-specificity in the posterior ventral temporal visual stream 

The ventral stream of visual processing pathways that extends from the occipital 

lobe to the temporal lobe has been recognized to be engaged in object identification. 
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Numbers of studies have identified “category-specific regions” in the ventral temporal 

areas. The landmark study by Kanwisher and colleagues (1997) first named an 

individual-specific region in the fusiform gyrus that selectively responded to faces as the 

fusiform face area (FFA). The FFA has been found to show greater activations in the 

presence of faces, regardless of the viewpoints, than in the presence of exemplars of 

nonliving common objects, other parts of human body, and scrambled faces (generated 

by partitioning the original picture of face and shuffling the pieces to different locations). 

One remaining question is that despite the rigid controls over a number of low-level 

visual features, neither objects such as buildings and hands, nor scrambled faces that 

serve as the control condition have a similar contour or layout, thus it is possible that the 

activation in FFA results from the response toward certain types of shape and structure. 

In fact, a shape with these features is very likely to be perceived as a face, which makes a 

clear dissociation in experiment manipulation between the concept of face and the visual 

structure difficult. This question has been addressed by a subsequent study investigating 

the relationship between inverted face and FFA (Kanwisher, Tong, & Nakayama, 1998). 

The FFAs of some of the participants showed reduced activation for inverted faces, 

which had the same visual features as upright faces except the position but were more 

difficult for face recognition. This effect of inversion was stronger and more consistent 

across individuals on two-tone face, which disrupted face detection when it was placed 

upside-down. Moreover, another study (Yovel & Kanwisher, 2004) clearly demonstrated 

that the FFA is selective for face, as a semantic category, rather than for configural 

processing. These results dissociated the processing of the face per se from the processing 

of low-level visual features.  
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The interpretations on the role of the face-specific areas have reached no 

consensus. The existence of FFA may indicate a mechanism with qualitatively different 

kinds of computation for a particular domain (Kanwisher, et al., 1997), but alternative 

explanations are also available. A prominent argument is that the seemingly face-specific 

effect reflects the expertise of processing faces compared to other objects, while the 

mechanisms are not category-specific (Gauthier & Tarr, 1997). The debate between the 

FFA hypothesis and the expertise hypothesis is highly relevant to the general question of 

domain-specificity of object representation (for a critical review, see McKone & 

Kanwisher, 2005).  

A comparison of activation for faces and for another domain of object, which 

requires the same level of expertise to detect and recognize, but physically different and 

unrelated to faces, will provide key information to the question. Neuroimaging studies 

using words as stimuli (Puce, Allison, Asgari, Gore, & McCarthy, 1996), training 

participants to become experts to a laboratory-made object (Gauthier, Tarr, Anderson, 

Skudlarski, & Gore, 1999), or recruiting participants who were real-world experts to 

certain objects (Gauthier, Skudlarski, Gore, & Anderson, 2000; Rhodes, Byatt, Michie, & 

Puce, 2004) have revealed inconsistent results. Crucially, none of these findings indicate 

that objects other than faces engage FFA to the same degree as faces do.  

In addition to the consistently found face-specific effect (Haxby et al., 1999; 

McCarthy, Puce, Gore, & Allison, 1997), selective responses to other categories of 

objects have also been identified in distinct regions in the ventral temporal area. These 

categories include scenes or spatial layouts (Epstein, Harris, Stanley, & Kanwisher, 1999), 

houses (Aguirre, Zarahn, & D'Esposito, 1998), tools (Chao, Haxby, & Martin, 1999), and 
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body parts (Downing, Jiang, Shuman, & Kanwisher, 2001). These findings have jointly 

suggested domain-specific organizations for the pre-semantic representation of objects in 

ventral temporal areas. 

Whether this interim conclusion is also applicable to the representation of 

conceptual knowledge of objects? The key to such a question is to dissociate the higher-

level conceptual processing from the object perception or mental image generation. This 

can be achieved by using tasks demanding deep processing, presenting stimuli in 

symbolic format, investigating concepts that are detached from physical objects, i.e. 

concepts related to objects but with higher abstractness, such as the knowledge about 

broader domains (living vs. nonliving things) or object-related properties, etc. Chao and 

colleagues (1999) found the medial areas of the right fusiform gyrus that were more 

active in categorical judgment on the names of tools were also more active in picture 

naming of tools compared to animals. Similarly, voxels in the right lateral fusiform gyrus 

that were significantly more active in categorical judgment of animals also showed a 

greater response in naming animal pictures. This suggests the spatial overlap between 

perceptual and conceptual processing of objects. A study using the semantic priming 

paradigm showed that a pair of words referring to two related objects elicited reduced 

activity compared to a semantically unrelated word pair in several areas, including the 

bilateral ventral temporal cortex (Wheatley, Weisberg, Beauchamp, & Martin, 2005). 

This provides support for the hypothesis that the ventral temporal area is sensitive to 

conceptual processing in the absence of explicit sensory processing. This study also 

identified the distinction between living and nonliving things: the lateral part of left 

fusiform gyrus responded more greatly to animals than to artifacts. Martin (2007) 
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reviewed studies using various tasks and stimuli and argued that the lateral area of 

fusiform gyrus is consistently associated with animals and human bodies, whereas the 

medial part has been associated with manmade objects. This has been argued to be 

consistent with the spatial dissociation of face vs. place perception in terms of the living 

vs. nonliving distinction (Martin, 2007; Martin & Caramazza, 2003). 

The finding of domain-specific areas for animate and inanimate objects does not 

explain the organization principles by itself. For example, Rogers et al. (2005) asked 

participants to verify the category of pictures of animals and vehicles. When the task 

required basic-level categorization (dog or car), the lateral posterior fusiform gyrus 

responded more strongly to animals as expected. However, the preferential response to 

animals disappeared when the task required categorization on more specific level 

(Labrador or BMW). These results may indicate that the lateral fusiform gyrus represents 

object concepts at coarse levels, as the domain-specific hypothesis suggests, but it may 

also indicate that the role of this area is detailed discrimination of visual or semantic 

features, as the authors concluded.  

A study (Wheatley, Milleville, & Martin, 2007) that indicated the role of fusiform 

gyrus in the interpretation of object animacy shed light on this issue. In this experiment, 

participants watched or imagined moving shapes that could be inferred as either animate 

or inanimate objects according to two types of biasing backgrounds. When the shapes 

were interpreted as animate objects, the lateral portion of left fusiform gyrus as well as 

other areas related to social cognition showed increased activity compared to the 

condition when the same shapes were inferred as inanimate. Although it is logically 

possible that the lateral fusiform activation was due to additional imagery of real living 
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objects, this study provides strong suggestion that the organization of a living vs. 

nonliving distinction is at least partly driven by the conceptual level dissociations.  

The role for central properties in object concept representation 

Evidence discussed above shows the subareas in the ventral temporal cortex that 

preferentially respond to several categories of objects. However, the representations of 

object-related knowledge are not restricted to the ventral temporal stream. The category-

specific activations are found in more than one continuous area. For example, in addition 

to the fusiform gyrus, the superior temporal sulcus has been associated with face and 

animal processing. A more prominent example is the activation of the left posterior 

middle temporal gyrus in response to artifacts, particularly tools (e.g., Chao, et al., 1999; 

Martin, Wiggs, Ungerleider, & Haxby, 1996; Mummery, Patterson, Hodges, & Price, 

1998). Does domain-specificity hold when taking other relevant systems into 

considerations? Parallel to the topography based on animacy in the ventral stream, 

activation in the visual motion area has been suggested to be modulated by object 

category. The pSTS has been shown to preferentially respond to biological motion (see 

Allison, Puce, & McCarthy, 2000 for a review) while the pMTG and the premotor cortex 

respond more to the movement of manipulable objects (Beauchamp, Lee, Haxby, & 

Martin, 2002, 2003). These studies suggest the left posterior lateral temporal cortex also 

represents objects, but only for those with motion as an important or salient property, 

such as animals and tools.  

Regions in the pSTS/MTG for sound perception showed stronger activation to 

visually presented words denoting objects with salient acoustic features (e.g., telephones) 

than to those without such features (Kiefer, Sim, Herrnberger, Grothe, & Hoenig, 2008). 
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Generating words denoting objects or events that were characterized by visual (e.g., 

animal), motor (e.g., transportation), or somatosensory (e.g., body parts) features were 

found to elicit corresponding sensorimotor areas (Hwang, Palmer, Basho, Zadra, & 

Müller, 2009). Processing of words referring to objects with strong and unique smells is 

found to activate olfactory cortices compared with control words (Gonzalez et al., 2006). 

The embedding of certain categories of objects in certain modality-specific areas suggests 

the role for critical sensorimotor modalities in the neural representation of objects. 

Multimodal areas and hierarchical semantic processing 

The above sections argue that only part of the object concept is represented 

modality-specifically. Although the representations of objects rely on different modality-

specific systems to different extents, our knowledge about objects comprises information 

from multiple properties within and across modalities. How does the brain bind various 

properties to form meaningful object representations? 

The above section also showed that in the posterior ventral visual stream, the fine-

grained category-specific effects presented in the pre-semantic processes are blurred but 

merged into the coarse living vs. nonliving distinction during concept retrieval. If the 

posterior ventral stream shows the distinction by domains, how does the brain represent 

the knowledge about objects on the basic level or even individual level? 

As described before, the intercorrelations between features of different modalities, such 

as appearance and function, are recognized to be important to the object representation 

(Tyler & Moss, 2001). How is it realized in the brain? 

According to the convergence zone and hierarchical processing models, additional 

to the modality-specific areas, the semantic knowledge representation also requires 
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certain supramodal systems that are responsible for the complex feature discrimination 

and the combination of information across modalities. Two sites in the brain, one at the 

pSTS/MTG and the other at the anterior temporal cortex, have been proposed to perform 

these functions in different ways. 

The left pSTS/MTG. The left pSTS/MTG has been associated with integrating 

object-related information from multiple modalities. Pictures of objects or sounds 

typically generated by certain categories of objects have found to elicit stronger 

activations than meaningless complex stimuli (Beauchamp, Lee, Argall, & Martin, 2004). 

Presenting visual and auditory stimuli simultaneously elicited stronger activations than 

presenting unimodal stimuli of the same objects (Beauchamp, Argall, Bodurka, Duyn, & 

Martin, 2004; Beauchamp, Lee, et al., 2004; Taylor, Moss, Stamatakis, & Tyler, 2006). 

By using high-resolution fMRI, Beauchamp et al. (2004) revealed heterogeneous 

architectures in the STS bilaterally: within the functionally defined multisensory STS 

areas based on a standard-resolution fMRI, they found patches that responded 

preferentially to auditory or visual stimuli compared to stimuli of the other modality, and 

in-between patches that responded equally to both modalities. The authors proposed that 

such organization within the multisensory area suggested separate patches for the arrival 

of visual and auditory inputs and an integration in the intervening regions.  

Although this area was selectively activated for object recognition, it seemed 

insensitive to the semantic congruency between inputs from different modalities. 

Activations for processing congruent (picture of cat + sound of “meow”) vs. incongruent 

(picture of dog + sound of “meow”) stimuli were not different in either an implicit task 

(one-back same/different judgment, Beauchamp, Lee, et al., 2004) or an explicit task 
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(congruency judgment, Taylor, et al., 2006). This area was also found to respond 

indifferently to the living and nonliving domains (Taylor, et al., 2006). Therefore, the left 

pSTS/MTG area may serve as a center receiving semantically meaningful visual and 

auditory information without binding the information to form integrated concepts. 

The left anteromedial temporal cortex. On the other hand, in spite of the 

insensitivity of fMRI measures to the activities in the anterior temporal areas due to the 

susceptibility artifacts (Devlin et al., 2000; Lipschutz, Friston, Ashburner, Turner, & 

Price, 2001), functional imaging studies have provided converging evidence suggesting a 

role of the left anterior temporal cortex in multimodal processing of concrete concepts. 

Tyler et al. (2004) used a picture naming task that either asked for the name at a basic 

level (tiger) or at a domain level (living thing) to manipulate the level of specificity in 

differentiating among similar objects. First, when compared to a fixation baseline, both 

the basic-level and domain-level naming tasks activated bilateral areas in the inferior 

occipital cortex to fusiform gyrus, more prominently in the left hemisphere. When more 

lenient thresholding methods were applied, a trend of anteriorly and medially extended 

activation, including the perirhinal and entorhinal cortices, additional fusiform areas, 

amygdala, and hippocampus, was found in the left hemisphere, only for the basic-level 

naming. Second, the direct comparisons between the two conditions showed greater 

activations in the left entorhinal and perirhinal cortices for the basic-level than domain-

level naming, while the domain-level naming elicited greater activations in the right 

middle frontal gyrus. Third, the differences of percent signal changes between the basic-

level and domain-level tasks progressively increased from no difference along the 

anteriorly extended stream. These results suggested the anteromedial temporal area was 
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critical for differentiating detailed features in object knowledge retrieval, and also 

suggested a posterior-to-anterior stream for processing increasingly fine-grained semantic 

features. 

The role of the left anteromedial temporal cortex has been further confirmed by a 

study using finer-grained categories of objects (Moss, Rodd, Stamatakis, Bright, & Tyler, 

2005). Moreover, this study also found that during the basic-level naming, living things 

elicited stronger activations than artifacts, which was not shown during the domain-level 

naming. In the context of the identified functions for this area, these results were in line 

with the assumption that living things share more features, thus requiring more complex 

combinations of multimodal features for discrimination. 

In addition to the fine-grained semantic processing, the anteromedial temporal 

cortex has also been associated with integrating cross-modal perceptual properties into 

conceptual representation. This proposal mirrors nonhuman primate studies showing that 

the perirhinal cortex receives inputs from multiple sensory modalities (e.g., Suzuki & 

Amaral, 1994). The functional difference between the anteromedial temporal cortex and 

the pSTS/MTG was identified in a study by Taylor et al. (2006), showing that activities 

of the left perirhinal cortex were modulated by object domains and probably semantic 

congruency.  

Interim summary 

Semantic knowledge of an object is at least partly represented within the 

modality-specific systems that represent the central properties of the object. Within the 

visual processing stream in the posterior ventral temporal cortex, pre-semantic conceptual 

representation presents domain specificities for both coarse- and fine-grained categories 
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that are likely to be evolutionarily significant (as fine as faces and body parts, and as 

coarse as living things). This area is also sensitive to the semantic information of objects. 

Objects in the living domain tend to evoke stronger activation in the lateral areas 

compared to nonliving objects while the medial areas are more responsive to nonliving 

objects. Domain-specific activation profiles are also found in the visual motion area that 

represents knowledge about movements that indicate biological or instrumental functions. 

The convergence of multisensory information, particularly from the visual and auditory 

modalities occurs in the anteromedial temporal cortex and pSTS/MTG. The more anterior 

portion of the temporal cortex is sensitive to the more fine-grained semantic 

discrimination. 

1.2. Representational differences and relations between abstract and concrete concepts 

1.2.1. Motivations and theories 

Compared to the object-related concepts, the representation of abstract entities are 

less investigated and understood in the empirical studies as well as in the traditional 

cognitive theories. By definition, the more abstract a concept is, the more detached it is 

from physical entities. In practice, language is arguably the most commonly used vehicle 

to convey abstract knowledge. Although research on the organization of concrete 

concepts in the brain is closely linked to object perceptions, this approach meets apparent 

difficulty in understanding the representation of abstract concepts. Therefore, the amodal 

vs. modality-specific debate on the format of conceptual representation has been 

unsurprisingly dominated by the former.  

Abstract concepts are typically acquired later in development and more vulnerable 

to brain degeneration. The concreteness effect, which refers to the observations in a 
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variety of cognitive tasks that words representing concrete concepts are processed faster 

and more accurately than words representing abstract concepts (see Paivio, 1991; 

Schwanenflugel, 1991 for reviews), also suggests a disadvantage for our brain to process 

concepts with increased abstractness. The concreteness effect has become an important 

clue for the early theories about the representation of abstract knowledge. The dual-

coding theory (Paivio, 1991) assumes two independent processes are central to concept 

processing. The representations of both concrete and abstract concepts rely on a common 

verbal symbolic system, but representation of concrete concepts also involves a process 

based on mental imagery, resulting from the high imageability of concrete concepts in 

comparison to abstract concepts (book is more easily visualized than freedom). In 

contrast, the context availability hypothesis (Kieras, 1978) attributes the concreteness 

effect to the assumption that it is easier to assign a context to concrete concepts. This 

theory states that only one system is required for the brain to process semantic 

information (Schwanenflugel, Harnishfeger, & Stowe, 1988), indicating the difference 

between abstract and concrete concepts is that contextual information is more readily 

available to concrete concepts because they are associated with more representational 

information and have stronger connections to semantic knowledge than abstract concepts. 

The disadvantage of abstract concepts was found to be compensated when both concrete 

and abstract words were presented in a sentence context (Schwanenflugel & Stowe, 

1989).  

According to both theories, abstract concepts are by nature more vulnerable to 

brain damage, thus will always be more severely affected if a disproportionate 

impairment occurs. This is incompatible with findings of the reversal of concreteness 
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effect, i.e., better performances on abstract than concrete concepts in some patients with 

brain damage (see the introduction of Papagno, Fogliata, Catricalà, & Miniussi, 2009 for 

a review). The dissociation suggests the existence of neural substrates exclusively 

involved in the representations of concrete or abstract concepts, challenging the 

traditional theories only accounting for the representational advantages for concrete 

concepts.  

Furthermore, the organization principles of abstract concepts have been argued to 

be fundamentally different from those of concrete concepts. Crutch and Warrington 

(2005) reported a series of experiments on a patient with semantic refractory access 

dysphasia, with which the performance on semantic task is facilitated if the interval 

between a response and the subsequent stimulus is increased. A ubiquitously observed 

effect on refractory access disorders is the sensitivity to semantic similarities in the 

concrete domain: refractoriness occurs not only in the processing of individual concepts, 

but also in concepts similar to the previously presented ones. However, such an effect 

was not observed for abstract concepts in a spoken word – written word matching task: 

the refractoriness remained at the same level whenever the presented abstract words were 

synonyms or unrelated, suggesting that abstract words with similar meanings were not 

necessarily presented in similar neural spaces as the concrete words do. By contrast, 

abstract but not concrete words with associated meanings (exercise, healthy, fitness, etc.) 

presented significant interferences with each other, suggesting abstract concepts are 

represented in an “associative neural network”. 

1.2.2. Implications from activational differences: neuroimaging evidence 
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Neuroimaging studies that compare the activation profiles of abstract and concrete 

words processing have reached few conclusions on how the underlying mechanisms are 

different. Supporting evidence exists for either theory (Binder, Westbury, McKiernan, 

Possing, & Medler, 2005; Kiehl et al., 1999; Martin-Loeches, Hinojosa, Fernandez-Frias, 

& Rubia, 2001), while other studies show results that are inconsistent with both theories 

(Kiehl, et al., 1999; Pexman, Hargreaves, Edwards, Henry, & Goodyear, 2007). One 

reason of this confusion is the discrepancies in explaining the theories with neuroimaging 

language. The cognitive theories explaining the concreteness effect were raised before the 

time when functional neuroimaging techniques were widely available. The 

neuroanatomical predictions of the theories were derived from early observations in 

patients with verbal or imagery deficits. The translations of different theories to 

neuroanatomical predictions are sometimes vague and not exclusive from each other. For 

example, the dual-coding theory makes few inferences of the activities in the left 

hemisphere for concrete compared with abstract concepts, while the context-availability 

theory does not predict the activation comparison between concrete and abstract concepts 

in the right hemisphere, thus leaving room for post-hoc explanations. 

Moreover, some predictions from the original theories have been shown to be 

incompatible with the more recent functional neuroanatomical findings. For instance, a 

shared prediction of the dual-coding and the context-availability theories is that greater 

activation should be observed for concrete concepts in comparison to abstract concepts. 

A number of studies only identified regions selectively involved in processing abstract 

concepts (Friederici, Opitz, & von Cramon, 2000; Grossman et al., 2002; Jessen et al., 

2000; Kiehl, et al., 1999; Noppeney & Price, 2004; Perani et al., 1999; Pexman, et al., 
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2007). For another example, the dual-coding theory assumes that representation of 

abstract concepts is restricted to the language-dominant hemisphere, while concrete 

concepts rely on both hemispheres because the image-based system is known to be 

bilateral (Paivio, 1986). Although some neuroimaging studies use the hemispherical 

asymmetry as a criterion of the involvement of mental imagery process (e.g., Binder, et 

al., 2005), the laterality of image generation has been controversial. Compared to 

listening passively to abstract words, imagining the appearance of the objects when 

concrete nouns were aurally presented was found to activate the inferior temporal lobe, 

premotor area and the anterior cingulate gyrus in the left hemisphere (D'Esposito et al., 

1997). Based on the current understanding of the neural machineries for both mental 

imagery and concrete object representation (Ganis, Thompson, & Kosslyn, 2004; 

Kosslyn, Ganis, & Thompson, 2001), simply using the hemispheric asymmetry as the 

criterion has been argued to lack specificity (Scott, 2004).  

Similarly, different studies have offered different explanations on the predictions 

of context-availability from a neural view. Some studies emphasize the difference in the 

strength of association with the context between abstract and concrete concepts. For 

example, Binder et al. (2005) stated that according to context availability hypothesis, the 

neural substrates of abstract and concrete concepts are identical, while activations 

correlating with concrete concepts are stronger than those of abstract concepts. Other 

studies emphasize the accessibility to context, or the retrieval difficulty. For example, 

Fiebach and Friederici (2004) interpreted its prediction as stronger activity for abstract 

words in brain regions associated with the retrieval of semantic information, mainly in 

the left posterior superior temporal region. The lack of correspondence between early 
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theories and neuroimaging language suggests revisions on the theories and cautions on 

interpreting the results. 

1.3. Multivariate pattern analysis 

1.3.1. Motivation 

The sections above review studies using neuroimaging techniques to infer how 

conceptual knowledge is represented in the brain based on statistical parametric mapping 

(SPM),which characterizes region-specific responses by performing statistical analysis on 

individual voxels (Friston et al., 1994). Despite the tremendous effectiveness in dealing 

with questions of locating brain areas whose activities systematically vary with specific 

cognitive process, SPM has its limitation as a univariate approach. Because SPM treats 

individual voxels independently with separate general linear models, it is unable to 

capture the joint activity patterns grounded in multiple areas. Also, the mass-univoxel 

modeling is accompanied by multiple comparisons in statistical contrasts. Stringent 

control on the increasing familywise type I error rate impairs the power of studies further. 

One of the conventional ways to rescue power in SPM approach is focusing on specific 

regions, such as the small volume comparison or regions of interest analysis, instead of 

fishing within the whole brain data. However they are not suitable when a clear 

anatomical hypothesis is lacking, or when the cognitive processes are not concentrated in 

a small number of areas. 

With the motivations of detecting spatially distributed information content beyond 

single voxels as well as gaining power, multivariate pattern analysis (MVPA) has been 

introduced as a complementary approach to SPM. In a pioneering work, Haxby and 

colleagues (2001) were able to decode the functional architecture during viewing pictures 
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of eight commonplace categories of objects in human ventral temporal cortex. This study 

showed the ability of MVPA in detecting the difference in distributed response patterns 

toward different stimuli in the same region, verifying a theoretical hypothesis that is 

difficult to be tested by merely investigating the maxima of single voxels. Follow-up 

studies have found consistent evidence that the ventral temporal cortex provides critical 

information to accurately identify the categories of object a person is viewing (Hanson & 

Halchenko, 2007; Hanson, Matsuka, & Haxby, 2004). A number of MVPA studies (e.g., 

Cox & Savoy, 2003; Haynes & Rees, 2005; Kamitani & Tong, 2005) and reviews (e.g., 

Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 2006; O'Toole et al., 2007; 

Pereira, Mitchell, & Botvinick, 2009) following this early exploration have shown the 

effectiveness of this method on various topics.  

Considering the ways of addressing questions by using MVPA are different from 

those using the canonical approach, I will temporally deviate from the topic of concept 

representation and briefly overview MVPA methodology. MVPA has prominent 

applications in various neuroimaging and neurophysiological data. The following section 

will illustrate its application on fMRI data. 

1.3.2. A brief introduction on MVPA procedure 

The research question and procedure of an MVPA study are different from those 

of conventional SPM approach on several aspects due to the differences in goals and 

rationales. MVPA deals with the representational content of brain regions while SPM 

considers the magnitudes of activity as dependent variable. Therefore, instead of 

demonstrating the involvement of brain areas in a particular process, MVPA addresses 

questions in two directions: (1) to directly establish a temporary computational models 



www.manaraa.com

 

28 

 

characterizing the activity patterns (the reason of being temporary will be discussed later); 

and (2) to reversely decipher the neural response patterns in order to relate them to 

specific cognitive processes. The latter is sometimes also referred to as decoding, 

prediction, classification, or “mind-reading”, as it includes the procedure of indicating 

what type of information is being processed given a specific response profile. In practice, 

the two directions are often coexistent for the following reasons. If the goal of a study is 

to model the activity patterns of different conditions, the classification procedure will 

provide a validation that the models are productive, or distinguishable. If the goal is to 

decode mental states, the modeling, although being an implicit procedure, is necessary to 

achieve the successful decoding. Both the block and event-related designs have been used 

in MVPA studies. The greater sensitivity of MVPA enables it to decode the mental states 

based on activities in a short period of time, i.e. one or two scans for each event trial.  

The features of MVPA have been discussed by far in the frame of comparing to univoxel 

approaches. MVPA is apparently not the only multivariate statistical method that has 

been applied to neuroimaging data. An important reason for MVPA to be more welcomed 

than other multivariate approaches is MVPA directly connect the data pattern to 

conditions of a study (which will be referred to as categories) as SPM does. Compared to 

exploratory, descriptive, data-driven multivariate methods, such as principal component 

analysis or independent component analysis, MVPA is more compatible with the 

hypothesis testing paradigm (see O'Toole, et al., 2007 for more detailed and insightful 

discussions).   

A “typical” procedure of MVPA is usually constituted of the preprocessing, 

feature extraction, cross-validation, and significance testing (Figure 1.1). The  
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Figure 1.1 Example of the procedure of multivariate pattern analysis. 

preprocessing approach is very much the same as in SPM except that spatial smoothing is 

not always necessary: Without averaging across neighboring voxels, the data will retain 

the joint, fine-grained spatial patterns which may carry important condition-specific 

information. However, MVPA may require extra data mining processing before data 

enter the major analyses step. Temporally, unlike the SPM which may model a whole 

block of scans, MVPA uses a single time point of data by averaging scans in a block, or 

selecting single scan with estimated peak of activity in an event-related trial. Spatially, a 

feature selection procedure may be included to remove the measures that are unlikely to 

carry information. The feature, corresponding to the multivariate in MVPA, can refer to a 

subset of voxels as in most cases, independent components (e.g., Douglas, Harris, Yuille, 

& Cohen, 2011), connections between pairs of regions, or other variants that are extracted 

to represent the data. This procedure is usually important for two main reasons. First, 

there are numbers of occasions that not the whole brain is engaged in condition-specific 
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activities. Second, from a computational perspective, a better estimate of model requires 

a large number of observations (trials) and a small number of variants (voxels or other 

features), which is hard to achieve in fMRI studies by nature. Thus, feature selection is 

helpful to unburden the computational difficulties. Analogous to the functional localizer 

in SPM approach, in order to avoid circular reasoning, feature selection procedure should 

never be based on an ad hoc rationale to the categories.  

The training and test phases are the modeling and hypothesis-testing procedures. 

They are also the estimate and validation of a classifier. Analogous to the general liner 

model towards SPM, classifier is a structured algorithm applied to represent the 

multivariate data. Before classifier training, the overall dataset will be partitioned in 

parallel and assigned to the two phases. Conceptually, the training dataset is constructed 

in a high-dimensional space, in which the dimensions correspond to the features. A 

classifier training phase is to insert a hyper-plane to separate data of different categories 

apart as much as possible. In the test phase, the new, unseen set of data will be mapped 

onto the space so that the hyper-plane (classifier) can decide which category each data 

point belongs to, based on their locations. Because the actual categories of the test set are 

known from the experiment, the classification performance by the hyper-plane can be 

compared with the true categories, and evaluated in terms of accuracy.  

The above training and test procedure as a whole is called cross-validation. To 

make full use of the data and to reduce variability, cross-validation is very often 

performed in a recycling way: different subsets of the whole data will be assigned to 

training or test sets iteratively, and the overall accuracy will be evaluated across iterations. 
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The feature selection should be performed only on the training set in each iteration, then 

apply to the test set. This ensures that the classifier modeling is blind to the test set. 

A data-specific, random-permutation-based method is usually used to statistically 

evaluate the classification accuracy. The null hypothesis is that labels (categories) of the 

observations (trials) are meaningless, thus the classifier is trained on nonsense “patterns”, 

and the classification procedure is essentially guessing. To simulate the distribution of 

this null hypothesis, the same dataset will be trained and tested in the same procedure for 

multiple times, but with randomly permuted labels. Therefore, the significance level of 

the real accuracy can be estimated by comparing it to the guess distribution. 

MVPA procedures may have lots of variations in the specific steps or overall 

frame, for example, the analysis of representational similarity may replace the 

classification procedure according to the purpose, as long as they present the two 

definitional components: the multivariate data analysis approach, and the direct link 

between analysis results and experiment conditions. 

The advantages of examining information content and high sensitivity hold 

promise for addressing questions that are difficulty to deal with by SPM approach, as is 

discussed below. 

1.3.3. Previous application of MVPA on conceptual representation 

Revisiting evidence for category-specificity of concept representation in the ventral 

temporal stream 

It should also be noted that the category-specificity is a relative effect: category-

specific regions are also responsive to other categories, with smaller magnitudes. For 

example, the FFA is specialized for face perception in terms of the consistent response 
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with the largest magnitude over other categories, but it also significantly responds to 

objects other than faces (Haxby, et al., 1999; Ishai, Ungerleider, Martin, Schouten, & 

Haxby, 1999). Similarly, Chao et al. (Chao, Weisberg, & Martin, 2002) found that 

naming pictures of familiar animals or tools elicited reduced activities compared to novel 

animals or tools in the ventral occipitotemporal cortices that were not limited to the 

corresponding category-specific region of each. 

Moreover, the domain-specificity within modality-specific areas as shown in the 

previous section is not consistently found by other studies. A review on twenty studies 

that used pictures as stimuli to localize the category-specific activities showed 

considerable inconsistencies (Gerlach, 2007). Tyler et al. (2003) examined the 

representation of domain and property information using words denoting object names 

(animals or tools) or actions (biological actions or tool-related actions). Participants were 

asked to quickly judge whether each target word was semantically related to (essentially, 

whether the object belongs to the same semantic category as) the two cue words. The left 

fusiform gyrus, superior and middle temporal cortices were found to be activated by both 

object names and their associated actions when compared to the baseline task of letter 

string judgment, suggesting words referring to tool and animal implicitly activate the 

actions associated with them. The activities in the fusiform gyrus for objects and actions 

were largely overlapped, while the activities in the superior and middle temporal cortices 

were more extensive for actions than objects. However, this study did not find a domain-

specificity for either object words or action words. In another study (Marques, Canessa, 

Siri, Catricalà, & Cappa, 2008), participants were required to make judgment of living 

and nonliving things on the same sets of visual and motion properties (“cut trees” for 



www.manaraa.com

 

33 

 

both Beaver and Saw). Results showed the visual- and motion-specific effects 

respectively in expected areas, but no domain-specific main effect or interaction between 

domain and properties was found. Mechelli et al. (2006) argued that the greater activation 

in the medial fusiform gyrus for artifacts than animals could be at least partly explained 

by the different semantic relevance for the two domains: when semantic relevance were 

matched for stimuli in the two domains, the effect of artifacts > animals was greatly 

reduced. In short, the domain-specific hypothesis has been questioned that the overlap 

between categories is much more significant than the difference, and the exact location of 

“object area” is not consistent. The discrepancies across studies may be partly due to the 

analysis details. Studies identifying category-specific regions have relied heavily on a 

functional localizer by using lenient threshold, followed by region-of-interest analysis 

which avoids the stringent correction for familywise error rate. It is also possible that the 

locations of category-specific areas lack cross-individual consistency. 

Distributed activity patterns in domain-specific ventral temporal areas 

Canonical neuroimaging studies based on univoxel activation have identified a 

domain-based dissociation in the ventral temporal vision pathway, but left the question of 

how numerous categories and individual objects are recognized unanswered. MVPA 

studies have contributed to this question by showing distinguishable multivoxel patterns 

for different categories within the ventral temporal cortex. Haxby et al. (2001) 

investigated the response patterns when participants viewed pictures of living and 

manmade objects in seven categories. They hypothesized that the unique representation 

of each category was associated with a distinct pattern represented by strong and weak 

responses in multiple voxels in the general object cortex. If such category-specific 
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patterns exist, it should be possible to distinguish which category of stimuli a participant 

was viewing from the data. A correlation-based similarity measure was used to test this 

hypothesis, i.e. by measuring whether the response patterns of two independent 

observations from the same category were more similar than the patterns evoked by 

stimuli from different categories. The patterns for each of the categories were found to be 

significantly distinguishable, even when the voxels with maximal response to each 

category were excluded from the analyses, suggesting that patterns of non-maximal 

responses carry category-related information. On the other hand, in regions with maximal 

responses to a certain category, the patterns of response to other categories were still 

distinguishable. Thus, the pattern-specificity of an object category is reflected to a much 

greater extent than simply maximal response in the object-selective cortex. Specifically, 

the representation of faces and objects in the ventral temporal cortex are widely 

distributed, with spatial overlapping across categories. 

Since this first report of using MVPA to decode the perception of objects, the 

functional topographies in the occipital and ventral temporal cortices have been 

investigated in more details. A closer looking at the confusability of categories in 

classification reveals a primary distinction between animate and inanimate objects, and a 

further distinction between small artifacts and houses (Hanson, et al., 2004; O'Toole, 

Jiang, Abdi, & Haxby, 2005). Viewing or imagining categories and even objects such as 

individual faces, scenes, and numbers have been found to activate overlapped voxels, but 

with category- or object-specific patterns (Downing, Wiggett, & Peelen, 2007; Weil & 

Rees, 2010 p.651).  
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The response patterns in the ventral temporal cortex have been further 

demonstrated to be structured by the degree of animacy. By measuring the similarity of 

multivoxel response patterns toward six animal species from birds, insects, and primates, 

Connolly et al. (2012) showed a hierarchical category structure corresponding to the 

biological class structure, with insets and primates at the two ends of this continuum. 

Bugs elicited cortical activity patterns similar to artifacts, and primates elicited activity 

similar to living things in previous studies. Moreover, the cortical representational 

similarity was also correlated with participants’ similarity judgment on these species. 

These results suggest an animate-to-inanimate gradation represented in the ventral 

temporal cortex.  

Content-specific representation in early sensory and perceptual cortices  

An interesting finding by Connolly et al. (2012) is that the between-species 

dissimilarity in the ventral temporal cortex is correlated with the response patterns in V1 

cortex but not retinotopic visual cortex. Despite the extensive studies on the primary 

sensory systems, the recognized processes can only account for small properties of 

activity variances. Recent MVPA studies have identified the roles beyond early sensory 

processing in these areas. 

Harrison and Tong (2009) showed successful classifications on which of the two 

orientations of gratings was held in working memory from activity patterns in the visual 

cortex V1 to V4,suggesting the early visual regions contain memorized information of 

visual features. Ester and colleagues (2009) demonstrated that the areas showing 

differential patterns to visual details held in working memory were not limited to cortices 

that corresponded to the retinotopic position of the remembered item. Meyer et al. (2010) 
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found content-specific patterns in primary auditory cortex in the absence of auditory 

input. Participants watched muted videos of short events that implied sounds of animals, 

musical instruments or other ordinary artifacts. In the anatomically defined unimodal 

auditory cortices, they were able to identify which content of the videos the participants 

saw with accuracies above chance based on the multivoxel patterns but not based on the 

mean magnitudes of activities across voxels. Moreover, the significant correlation 

between participants’ ratings on how evocative the video was and the classification 

performance suggested that the activities at the very early stage of sensory processing 

were associated with conscious perceptual experience.  

In addition to the information within the same sensory modality, sensory cortices 

have also been found to respond to information of other modalities. For example, 

different types of natural sounds elicited distinguishable patterns in early visual cortex, 

even when the participants were performing an orthogonal word memorizing task to 

constrain mental imagery (Vetter, Smith, & Muckli, 2011). Ethofer and colleagues (2009) 

found that the voxels sensitive to voices also presented distinguishable patterns for 

different categories of emotions conveyed by aurally presented pseudowords. Based on 

the voxel-by-voxel correlations of the responses to different stimuli, Peelen et al. (2006) 

found similar responses to body parts and biological motion in the body-selective regions 

in posterior fusiform gyrus and posterior inferior temporal sulcus.  

Overall, these findings suggested the sensory cortices might serve a function in 

the representation across modalities. Such implication challenges the traditional view on 

the meaning of activity in primary sensory cortices, and further indicates the link between 

perceptual and conceptual processing.  
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Focusing on semantic knowledge 

A large body of MVPA literatures on object representation has focused on the 

pre-semantic conceptual representation in the ventral temporal visual stream. These 

studies have contributed to addressing the specific questions based on findings and 

debates from the univoxel studies. Mitchell and colleagues (2008) tackled the question of 

semantic knowledge representation from a different perspective. They hypothesized that 

the representational patterns of word meanings in the brain could be associated with the 

use of words in large text corpus. The semantic features that distinguish a target word 

could be represented by the co-occurrence of certain other words with it in the text corpus; 

therefore, the brain activity associated with the target word could be modeled by these 

featural words. In this study, a set of 25 verbs representing sensorimotor events related to 

objects (e.g. taste, enter, wear, clean) were chosen as the semantic features to represent 

60 nouns referring to various categories objects, forming a model for each noun by linear 

combination of these features. These models were then trained with the fMRI activity 

patterns of a subset of the nouns, thus a brain signature could be inferred for each of the 

features. The predicted activity patterns for the left-out nouns based on the trained 

computational model were found to successfully match the actual patterns for these 

words. This study builds the link between the brain activities with computationalist 

approach and shows the possibility of establishing predictive models for the brain 

activities associated with arbitrary words. 

Another study combining MVPA and text corpus analysis method was able to 

generate relevant text from fMRI data when participants were viewing object pictures 

(Pereira, Detre, & Botvinick, 2011). In this study, the researchers collected fMRI data 
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when participants viewed 60 categories of objects during a semantic processing task. 

Meanwhile, they collected 3500 Wikipedia articles relevant to the objects, and extracted a 

topic model from the text for each article, which modeled a probability distribution of 

words for each topic. The relations of topic models and corresponding brain activity 

patterns were then learned by regression model, thus establishing functions of the 

probability for different topic models to be predictive for a target brain image. Finally in 

the test phase, a set of new brain images that were unseen during the learning phase were 

applied to the established models, to reversely generate words that have high probability 

of associating with the brain images. Results showed high matches between the fMRI 

stimuli category and the generated words, which were also quantitatively validated by 

accuracies of classifying brain images into the articles. As the authors proposed, further 

development of this approach may offer a new perspective of decoding brain activities 

into language outputs. 

The representational patterns of words denoting objects have been found 

decodable in a widely distributed pattern. Chan et al. (2011) recorded simultaneous EEG 

and MEG when participants were asked to judge whether the presented words referred to 

a living or nonliving object larger than one foot in any dimension. The representation of 

each of the five words could be decoded from EEG and MEG recordings. Moreover, the 

patterns that were informative to the discrimination were found in data from the bilateral 

anterior temporal, bilateral inferior frontal, and left inferior temporal-occipital sensors, 

which was more distributed than the areas localized by univoxel analysis.  

Interim summary 
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The application of multivariate pattern analysis on neuroimaging studies has 

provided new perspectives to understand conceptual representation in the brain. The 

representations of various objects have been found to elicit identifiable distributed 

response patterns in the ventral temporal cortex. In line with the finding of locational 

differences of the peak activations for living and nonliving objects, the semantic 

similarities on animacy between objects are likely to be encoded in the multivoxel 

patterns in the posterior ventral temporal cortex. Multivariate patterns in certain early 

sensory systems also present cross-modal content-specific information, suggesting that 

conceptual representation may occur at early stages of processing. Another important 

implication from multivariate studies is that the brain areas conveying informative 

patterns associated with semantic concepts are more widely distributed than thought.  

1.4. Motivations for the current work 

The critical new findings on the perpetual and semantic representations of 

concrete concepts have provided important insights and challenged some of the 

traditional perspectives on neural representation of concepts to a great extent. By contrast, 

how abstract concepts are represented in the brain is less studied. As a preliminary step, 

using the current findings on the representation of concrete concept as a scaffold to 

understand abstract concepts appears to be an effective approach and has been 

implemented in previous studies. What conclusion can we draw from the extant literature 

examining the representational differences between abstract and concrete concepts? How 

would MVPA offer further information on this question, and what would be the 

implications on previous findings? How could MVPA, combined with other data analysis 

methods, answer questions that are difficult to be tested by the canonical methods? The 
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general goal of this dissertation was to provide converging evidence that the neural 

representations of abstract and concrete semantic knowledge rely on multiple different 

mechanisms. Specifically, it aimed to address the following four questions: 

Chapter 2: According to previous neuroimaging studies, what brain regions 

consistently show activational differences for representing abstract and 

concrete concepts? 

Chapter 3: Can multivoxel activity patterns be used to decode fMRI data associated 

with abstract or concrete concept processing on a single trial basis? How 

will the results inform us about the mechanisms of abstract and concrete 

concept representation? 

Chapter 4: Does the functional connectivity associated with abstract or concrete 

concept processing show distinguishable patterns that are consistent across 

individuals? 

Chapter 5: How can MVPA be applied as a cross-modal prediction approach to 

investigating the role for semantic memory in other cognitive process?
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Chapter 2 

Meta-analysis of neuroimaging studies on the representational differences 

between abstract and concrete concepts 

2.1. Introduction 

The review of neuroimaging evidence on the representational difference between 

abstract and concrete concepts (section 1.2.2) suggests considerable discrepancies across 

studies (also see Figure 2.1). Typically, a single neuroimaging experiment does not have 

enough power to reveal the neural substrates of a cognitive process, partly due to the 

limited sample size. Desmond and Glover (2002) have found that to detect a signal 

change of 0.5% with 80% power, approximately 25 participants are necessary, and many 

studies have far fewer participants than that (Thirion et al., 2007). A number of studies 

examining the neural representation of abstract and concrete concepts have been 

conducted, and it is possible to examine the consistency among results using a 

quantitative approach. Two studies (Fiebach & Friederici, 2004; Pexman, et al., 2007) 

reviewed the reported activity coordinates in relevant studies; Fiebach and Friederici 

(2004) also offered an integrated visualization of these peaks in one brain template. 

Binder et al. (Binder, Desai, Graves, & Conant, 2009) performed a meta-analysis of 

functional neuroimaging studies on semantic processing, and identified representational 

differences in abstract and concrete concepts. The aim of the current study is to clarify
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Figure 2.1 Activation peaks for abstract vs. concrete representation from 19 studies 

(Table 2.1) are shown on the brain template. © 2013 Human Brain Mapping 

 

the differences in neural representation of abstract and concrete concepts by integrating 

existing neuroimaging evidence through meta-analysis. Multilevel kernel density analysis 

(Etkin & Wager, 2007) was applied to evaluate the activation consistency across 

published neuroimaging studies of abstract and concrete concept representation. 

2.2. Methods 

2.2.1. Study selection 

Peer-reviewed journals in PsycARTICLES, PsycCRITIQUES, PsycINFO, Web of 

Science and Psychology & Behavioral Sciences Collection databases were searched for 

neuroimaging studies of abstract and concrete concepts. In addition, we searched the 

reference lists of identified studies to ensure inclusion of all relevant studies fitting our 

criteria. To compare abstract and concrete concepts directly, the criteria for study 

inclusion were (1) participants were healthy adults; (2) the selected studies reported the 

peak activations in Montreal Neurologic Institute (MNI) or Talairach coordinates 

(Talairach & Tournoux, 1988) in either condition, i.e., brain regions where concrete 
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concepts showed greater activations compared to abstract concepts (concrete > abstract) 

or the reverse (abstract > concrete); (3) contrasts were performed at a whole brain level 

(i.e., not at a region-of-interest level). These criteria resulted in a total of 303 participants 

across nineteen studies eligible for inclusion in the meta-analysis (Table 2.1). 

2.2.2. Multilevel kernel density analysis (MKDA)  

The multilevel kernel density analysis is a coordinate-based meta-analysis method 

where the statistical indicator is the probability of activation of a given voxel in the brain 

(Kober et al., 2008; Wager, Lindquist, & Kaplan, 2007; Wager, Lindquist, Nichols, 

Kober, & van Snellenberg, 2009).The general null hypothesis is that peak coordinates of 

activated regions are randomly distributed. If the number of nearby active peaks for a 

peak coordinate is greater than the number expected by chance, the null hypothesis is 

rejected. A number of meta-analysis methods are available; the MKDA method was 

selected for its several advantages. First, MKDA emphasizes the multi-level hierarchy of 

the data: multiple peaks are nested in a contrast, and multiple contrasts are nested in a 

study. Second, MKDA allows weighting contrasts by study sample size and quality. 

Compared with other commonly used meta-analysis methods in brain imaging 

(e.g., ALE, Turkeltaub, Eden, Jones, & Zeffiro, 2002), this method prevents the result 

from being dominated by any single study with a large number of reported activations. It 

has the ability to weight the included studies by the number of participants and the 

quality of analysis based on random or fixed effects designs, such that studies with fewer 

participants or fixed effects designs are given less weight while studies with a larger 

numbers of participant or random effects designs are given more weight. Finally, the  
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Table 2.1     Studies included in the meta-analysis 

 

Study 

Imaging 

modality 

Number of 

participants 

Random or 

fixed effect Materials 

Input 

modality Task 

Mestres-Missé et al., 2008 3T fMRI 15 Random Sentence pairs Visual Recognition 

Tettamanti et al., 2008 3T fMRI 18 Random Sentences Auditory Passive listening 

Pexman et al., 2007 3T fMRI 20 Random Words Visual Semantic categorization 

(consumable or not) 

Fliessbach et al., 2006 1.5T fMRI 21 Random Words Visual Recognition 

Harris et al., 2006 1.5T fMRI 20 Random Words Visual Semantic judgment 

(positive or negative) 

Binder et al., 2005 1.5T fMRI 24 Random Words Visual Lexical decision 

Sabsevitz et al., 2005 1.5T fMRI 28 Random Word triads Visual Semantic similarity 

decision 

Wallentin et al., 2005 1.5T fMRI 18 Random Sentences Visual & 

Auditory 

Sentence comprehension 

Fiebach&Friederici, 2004 3T fMRI 12 NA Words Visual Lexical decision 
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Noppeney& Price, 2004 2T fMRI 15 Random Word triads Visual Semantic similarity 

decision 

Whatmough et al., 2004 PET 15 NA Word pairs Visual Semantic similarity 

decision (read aloud if the 

pair is similar in 

meanings) 

Grossman et al., 2002 4T fMRI 16 Fixed Words Visual Semantic judgment 

(pleasant or not) 

Friederici et al., 2000 3T fMRI 14 NA Words Visual Semantic categorization 

(syntactic task: noun or 

function word; 

semantic task: concrete or 

abstract) 

Jessen et al., 2000 1.5T fMRI 14 Fixed Words Visual Memory encoding 

Wise et al., 2000* PET 18 Fixed 

Fixed 

Words 

Word triads 

Auditory 

Auditory 

Passive listening 

Semantic similarity 
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Fixed Words Visual/ 

Auditory  

decision sample 

Passive listening/viewing 

Kiehl et al., 1999 1.5T fMRI 6 Fixed Words Visual Lexical decision 

Perani et al., 1999 PET 14 Fixed Words Visual Lexical decision 

Mellet et al., 1998 PET 8 Fixed Words with 

definitions 

Auditory Mental image generation 

(concrete)& passive 

listening (abstract) 

D’Esposito et al., 1997 1.5T fMRI 7 NA Words Auditory Mental image generation 

(concrete) & passive 

listening (abstract) 

* Relevant results taken from multi-study analysis conducted by Wise at al. (2000)  
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MKDA test statistic offers a straightforward interpretation as the weighted proportion of 

activated contrasts in a kernel around each voxel (Kober, et al., 2008). 

For this meta-analysis, relevant study variables were sample size, analysis type 

(fixed or random effects), and peak coordinates in the contrasts concrete > abstract and 

abstract > concrete. We retained significance criteria set by individual studies. For those 

studies using multiple tasks for one contrast, data from only one task were retained to 

avoid inclusion of data from the same participants more than once (however, we cannot 

guarantee against data from the same participants being reported in different studies). 

Analyses were performed in Matlab (Mathworks, Naticks, MA) based on the MKDA tool 

package created by Wager and colleagues (http://wagerlab.colorado.edu/tools). Peaks 

from each study were convolved with a spherical kernel of 10 mm radius (kernels of 5 

mm and 15 mm were also investigated). The studies were weighted by the number of 

participants (N) and type of analysis (δ):  

 

where c is the index factor for the number of comparison maps I (Kober, et al., 2008). 

Studies that used random effects analysis had an adjusted weight of 1.0 and studies that 

used fixed effects, or when analysis type was unknown, had an adjusted weight of .75 

(Kober, et al., 2008). The test statistic P represents the proportion of studies that found 

significantly active voxels within the 10 mm radius of each voxel. The threshold for 

statistical significance was determined using a Monte Carlo simulation procedure with 

5000 iterations; increasing the number of iterations to greater than 5000 did not change 

the results. The significance threshold was set at the proportion exceeding 95% of the 
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Monte Carlo simulation maxima and controlled by familywise error (FWE) rate. In 

addition, we examined FWE-corrected results based on cluster extent.  

2.3. Results 

Meta-analysis results indicated different neural representation patterns for abstract 

and concrete concepts (Figure 2.2). Regions with significant proportions of stronger 

activation for abstract compared to concrete concepts were in the inferior frontal gyrus 

(IFG) and middle temporal gyrus (MTG) in the left hemisphere. Regions that showed 

stronger activation for concrete concepts were found in the left precuneus, 

parahippocampal gyrus, posterior cingulate, and fusiform gyrus (Table 2.2). These results 

were robust to changes in kernel size. Additional activated foci corrected on cluster 

extent at the 10 mm kernel were located within these regions. Applying a 15 mm kernel 

resulted in additional regions for each of the contrasts. Abstract concepts elicited greater 

activation in the left precentral gyrus, whereas concrete concepts were more strongly 

activated in left superior occipital gyrus, angular gyrus and culmen. 

2.4.     Discussion 

This study used a multilevel kernel density method to conduct a meta-analysis on 

nineteen neuroimaging studies to investigate the neural representation of abstract and 

concrete concepts. Although the results of these studies were varied, the meta-analysis 

presented a consistent tendency for representational difference. Results suggest a greater 

engagement of the verbal system for processing of abstract concepts, and a greater 

engagement of the perceptual system for processing of concrete concepts.  
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Figure 2.2 Meta-analysis of neuroimaging studies on abstract and concrete semantic 

concept representation. Color map indicates the weighted probability of activation for a 

given area across individual studies. © 2010 Human Brain Mapping 

 

Concrete > Abstract 

The comparison of concrete > abstract concepts showed significant consistent 

activation in the left precuneus, posterior cingulate, parahippocampal gyrus, fusiform 

gyrus and culmen, with a trend toward the left temporal, occipital and parietal regions 

that are around the angular gyrus (Figure 2.2). These results imply greater engagement of 

object and mental imagery processing in concrete compared to abstract concept 

representation. 

The left fusiform and parahippocampal gyrus have been found to contribute to the 

processing of visual, imageable spatial property knowledge during explicit semantic tasks  
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Table 2.2     Consistently activated foci across studies (p ≤ 0.05, FWE corrected) 

 

  MNI Number of 

voxels Region x y z 

Abstract > Concrete     

Left Inferior Frontal Gyrus -48 18 -2 738 

 Inferior Frontal Gyrus -50 20 4 373 

 Inferior Frontal Gyrus -42 20 -4 138 

 Middle Temporal Gyrus -52 10 -18 68 

 Superior Temporal Gyrus -48 18 -10 117 

 Superior Temporal Gyrus -48 10 -8 42 

 Middle Temporal Gyrus -52 8 -32 37 

 Middle Temporal Gyrus -58 -42 -4 7 

Concrete > Abstract     

Left Precuneus -34 -76 34 147 

 Posterior Cingulate -12 -58 12 111 

 Posterior Cingulate -14 -56 12 45 

 Posterior Cingulate -10 -62 14 41 

 Posterior Cingulate -12 -56 6 25 

 Fusiform Gyrus -40 -52 -22 16 

 Parahippocampal Gyrus -32 -32 -20 8 

 Parahippocampal Gyrus -28 -34 -20 1 
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(Sabsevitz, Medler, Seidenberg, & Binder, 2005; Wallentin, Østergaard, Lund, 

Østergaard, & Roepstorff, 2005). Although the increased activation of the left fusiform 

gyrus for concrete concepts might be confounded by task differences rather than the 

concreteness difference in some studies (D'Esposito, et al., 1997; Mellet, Tzourio, Denis, 

& Mazoyer, 1998), this left fusiform activation effect was also found in the concrete > 

abstract comparison by using a precisely controlled semantic similarity task (Sabsevitz, 

et al., 2005). Moreover, the anterior fusiform gyrus was associated with the activation of 

several competing alternatives associated with the target concrete word in looking for the 

matching concept (Mestres-Missé, Münte, & Rodriguez-Fornells, 2008), which was 

compatible with the findings of this area in retrieving complex knowledge about objects 

(p19, section 1.1.2).  

The left parietal lobe is predominant in generating mental images, and activation 

in parietal and occipital lobes has been attributed to different mental imagery tasks 

(Kosslyn, et al., 2001; Sack, Camprodon, Pascual-Leone, & Goebel, 2005). Specifically, 

the precuneus has been associated with memorizing verbally described scenes which 

requires mental image generation (Mellet et al., 2000). The comparison of concrete 

concepts to abstract concepts also elicited activity in the left supramarginal gyrus and 

posterior cingulate. The posterior cingulate has been associated with mental imagery 

processes (Johnson et al., 2006; Kilts, Gross, Ely, & Drexler, 2004). This region has also 

been linked with episodic and visuospatial memory function (Aggleton & Pearce, 2001; 

Epstein, Higgins, Jablonski, & Feiler, 2007; Rudge & Warrington, 1991), possibly 

because mental imagery plays a role in those processes. However, others have suggested 

that the bilateral posterior cingulate is semantically more engaged in abstract information 
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processing (Pexman, et al., 2007; Tettamanti et al., 2005). This opposite effect may be 

due to the deactivation of this region in response to concrete concepts (Ghio & 

Tettamanti, 2010).  

Abstract > Concrete 

Consistently greater activities for processing abstract than concrete concepts were 

found in the left inferior frontal gyrus and left anterior temporal lobe (ATL) centering at 

the middle temporal gyrus (Figure 2.2). The anterior inferior portion of IFG has been 

linked to verbally-mediated semantic knowledge processing (Goldberg, Perfetti, Fiez, & 

Schneider, 2007; Petersen, Fox, Posner, Mintun, & Raichle, 1988). Semantic task 

requirements have been shown to alter activity in this area (Zatorre, Evans, Meyer, & 

Gjedde, 1992). Fliessbach et al. (2006) posited that the increased left IFG activation 

associated with abstract words reflects more strategic retrieval of semantic knowledge. 

This effect on semantic processing in the IFG has been dissociated from the effect of task 

difficulty, and it has been argued that IFG may act as a specialized central executive area 

for semantic retrieval (Demb et al., 1995; Noppeney & Price, 2004). The crucial role of 

the left inferior frontal area for abstract words processing has been further confirmed in a 

TMS study (Papagno, et al., 2009): task performances were hurt after the stimulation in 

left inferior frontal areas only when the participants were making lexical decision on 

abstract words. 

The left IFG has also been implicated in phonological processing during working 

memory tasks (Fiebach & Friederici, 2004). Lesions to the left IFG produce deficits in 

phonological and syntactic processes (Bookheimer, 2002). Sabsevitz et al. (2005) 

proposed that activation in the more posterior parts of the frontal lobe by abstract 
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concepts may represent phonological working memory processing, while the more 

anterior regions of the inferior frontal gyrus may play a role in the putative verbal 

semantic system. Binder et al. (2005) suggested that the stronger left IFG activation 

reflects the additional semantic processing for abstract words compared to concrete 

words during a lexical decision task, as abstract words are held in working memory in 

phonological form to a greater degree than concrete words. These inferences suggest that 

neural representational differences between abstract and concrete concepts might also be 

ascribed to phonological processing differences caused by processing difficulty. Such 

difficulty is likely to be intrinsic to the representation of abstract concepts rather than 

driven by task. 

The role for ATL in abstract concepts processing presented in neuroimaging 

studies has also been demonstrated in a TMS study (Pobric, Lambon Ralph, & Jefferies, 

2009). Although the preferential response to abstract concepts in this area has been 

argued to reflect the difference in retrieval strategies (Noppeney & Price, 2004), this 

effect has been found in studies requiring superficial or deep processing in the tasks using 

fMRI or PET scans (Table 2.3), suggesting the activational differences were due to the 

difference in neural representations per se, rather than in the retrieval processes. Pexman 

et al. (2007) found the greater activation in this area for abstract concepts, however, when 

the words with more than one meaning were excluded from the test, the difference were 

only found in the posterior area of the brain, which mirrored the findings in object 

concept representation that the anterior temporal area is responsive to detailed 

discrimination of object (e.g., Tyler, et al., 2004. See section 1.1.2 for detailed 

discussion).  
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Table 2.3 Studies that found preferential activations in the left anterior temporal lobe for processing abstract compared to 

concrete concepts. 

 

Study 

Imaging 

modality Task 

Laterality of 

activations 

Noppeney & Price, 2004 fMRI semantic similarity judgment Left 

Pexman, Hargreaves, Edwards, Henry, & 

Goodyear, 2007 fMRI semantic categorization Left 

Tettamanti et al., 2005 fMRI passive listening Left 

Binder, Westbury, McKiernan, Possing, & 

Medler, 2005 fMRI lexical decision Left 

Perani et al., 1999 PET lexical decision Bilateral 

Sabsevitz, Medler, Seidenberg, & Binder, 2005 fMRI semantic similarity judgment Bilateral 

Wallentin, Østergaard, Lund, Østergaard, & 

Roepstorff, 2005 fMRI sentence comprehension Bilateral 

Mellet, Tzourio, Denis, & Mazoyer, 1998 PET silent reading or mental imagery generation Right 
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Taken together, the consistent activation across studies resulting from processing 

of concrete compared to abstract concepts suggest the representation of concrete concepts 

relies more heavily on the visual perceptual and mental imagery system. The greater 

involvement of left IFG and ATL in processing abstract concepts is likely to suggest that 

the processing of abstract concepts is more demanding in retrieving relevant knowledge 

and discriminating among the competitors. 

Potential factors influencing results discrepancies among studies 

The meta-analysis results revealed the consistent difference between the neural 

representation of abstract and concrete concepts across studies. However, not all studies 

used in meta-analysis reported activations in regions identified by the meta-analysis. For 

instance, the most consistently reported region, the left IFG in abstract > concrete 

comparison, was found only in ten out of the nineteen studies. On the other hand, some 

other brain regions that were reported by several studies were not identified by the meta-

analysis results. Some of these regions were in close proximity to the consistently 

activated regions or were right hemisphere homologues, such as the inferior temporal 

gyrus (Mellet, et al., 1998; Sabsevitz, et al., 2005; Tettamanti, et al., 2008), or the right 

MTG for abstract > concrete comparison (Mellet, et al., 1998; Pexman, et al., 2007; 

Wallentin, et al., 2005). Additional regions were not identified by the meta-analysis, 

including the superior frontal gyrus for the abstract > concrete comparison (D'Esposito, 

et al., 1997; Pexman, et al., 2007; Sabsevitz, et al., 2005; Wallentin, et al., 2005), or the 

precentral gyrus for the concrete > abstract comparison (Mellet, et al., 1998; Sabsevitz, 

et al., 2005; Wallentin, et al., 2005). The effects of task and stimuli may have contributed 

to the discrepancies in results, as discussed below.  
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Effects of task. One might argue that the type of task used to elicit semantic 

processing can affect neural activation. For example, the relation of the left IFG 

activation to working memory (Binder, et al., 2005; Fiebach & Friederici, 2004; 

Sabsevitz, et al., 2005) makes it reasonable to assume a moderation effect of task load on 

this region. To determine the effect of task on the representation of concepts, we 

conducted additional meta-analyses examining the above contrasts according to task type. 

We divided tasks into superficial (passive listening and lexical decision on words and 

pseudowords) or deep processing (semantic categorization, semantic judgment and 

semantic similarity) categories. Several studies using tasks, such as recognition, were not 

included in this additional analysis because they did not fit our selection criterion as 

either superficial or deep processing tasks. However, the numbers of studies in the two 

groups were too small (7 and 8 respectively out of 19 studies) to detect consistent effects 

of task across the included studies. 

Effects of stimuli. The materials were similar across studies, so the form of the 

stimuli was unlikely to have an effect on our results. The stimuli used in individual 

studies were single words (real and pseudo), word groups or sentences. Sixteen studies 

used words while three used whole sentences as stimuli. Most studies presented the 

stimuli visually; also six studies presented auditory stimuli, some of which used both 

presentation modalities (Table 2.1).  

The effects of organizations of semantic categories in the brain have long been 

discussed (Bookheimer, 2002). The semantic categories selected to represent abstract or 

concrete concepts varied among studies. Most studies had one general abstract and one 

general concrete concept category, whereas some others used more specific subcategories. 



www.manaraa.com

 

57 

 

For example, Noppeney et al. (2004) used one semantic category for abstract concepts 

and three (sound, visual or hand motion) for concrete words; Harris et al. (2006) used one 

category for concrete and two (metaphysical or mental state) for abstract words. Regions 

identified by the current meta-analysis, such as the fusiform gyrus, have been associated 

with object recognition and naming (Bookheimer, Zeffiro, Blaxton, Gaillard, & Theodore, 

1995). The evidence raises the question of whether the representational differences 

between abstract and concrete concepts are content specific, in which case the change of 

specific word category would change the patterns of representational difference (Martin 

and Chao 2001). This question could be tested by including diverse subcategories in both 

abstract and concrete conditions. 

Stimuli characteristics such as the word frequency, length, familiarity, and 

phonological or orthographic match between abstract and concrete words can also be 

critical. A lower average word frequency of abstract words might activate additional 

regions not associated with semantic differences. In some studies the stimuli were not 

balanced on these factors, possibly due to the difficulty in finding semantically suitable 

words. As a consequence, the differences in activation may be attributed to missing 

controls. One example is the debate concerning the role of the superior temporal gyrus. 

The left superior temporal gyrus was consistently activated across studies for abstract > 

concrete concepts, but not all studies reporting this region controlled for phonological 

factors. In fact, it recently has been argued that the superior temporal gyrus may be 

engaged in phonological processing rather than semantic comprehension(Bradley & 

Mark, 2008; Graves, Grabowski, Mehta, & Gupta, 2008). 

Meta-analysis methodology  
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Meta-analysis combines data from multiple studies, resulting in a large total 

number of participants. The total number of participants included in the current analysis 

was 303, a number far beyond what is feasible within a typical neuroimaging study. 

MKDA was selected because it has several advantages suited to the investigation of 

representational differences for abstract and concrete concepts. It allowed weighting 

studies by the sample size and analysis type, and the results of MKDA provided an 

intuitive interpretation, representing the proportion of studies activating within the chosen 

radius of a voxel (Kober, et al. 2008). 

Despite its clear advantages, meta-analysis has some inherent limitations. Because 

the meta-analysis was based on spatial coordinates from neuroimaging data, it was 

limited to PET and fMRI studies, and excluded EEG/ERP studies despite the large body 

of literature in that field. In addition, coordinate-based meta-analysis methods such as 

MKDA incorporate information only from published coordinates. Thus, these methods do 

not account for different within-study variability and cannot model random variation 

across studies (Salimi-Khorshidi, Smith, Keltner, Wager, & Nichols, 2009). 

2.5. Conclusion 

This experiment has identified meaningful and consistent differences in the neural 

representation of abstract and concrete concepts by using meta-analysis to combine data 

from 303 participants across nineteen published studies. Abstract concepts elicit greater 

activity in the left inferior frontal gyrus and anterior middle temporal gyrus compared to 

concrete concepts, while concrete concepts elicit greater activity in the posterior cingulate, 

precuneus, fusiform gyrus and parahippocampal gyrus compared to abstract concepts. 

These results suggest greater engagement of the working memory and verbal system for 
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processing of abstract concepts and greater engagement of the perceptual system for 

processing of concrete concepts, likely via mental imagery.  
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Chapter 3 

Decoding abstract and concrete concept representation based on single-trial 

fMRI data 

3.1. Introduction 

Although the meta-analysis results offer reliable evidence of the cross-study 

consistency, the considerable disagreements of results among these studies are still 

alarming: visualizing peak activations from nineteen studies recruited in the meta-

analysis revealed distributed locations for the processing differences (Figure 2.1). The 

neural representational differences of abstract vs. concrete concepts were interpreted with 

various factors. The difference may occur during concept learning or semantic memory 

encoding (Jessen, et al., 2000), or is driven by the semantic retrieval strategy rather than 

the representation per se (Fiebach & Friederici, 2004; Thompson-Schill, D'Esposito, 

Aguirre, & Farah, 1997). The explicit task requirement of thinking of concrete concepts 

may call for a more imagery-oriented retrieval approach, while representing abstract 

concepts may introduce more verbal associations. Intrinsic difficulty of processing 

abstract compared to concrete concepts may also contribute to the neural representational 

differences. Because abstract concepts are less imageable, representing abstract concepts 

may occupy the working memory to a larger degree (Binder, et al., 2005). Whether these 

discrepancies are due to study idiosyncrasies, or whether they in fact do reflect the 

abstract vs. concrete processing differences as well, is unclear.
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Using multivariate pattern analysis to identify category-specific concept representation 

MVPA is an ideal approach for investigating if the content of concept 

representation can be accurately inferred from individual trials of data. Most MVPA 

studies on concept representation used pictorial stimuli (Carlson, Schrater, & He, 2003; 

Cox & Savoy, 2003; Hanson & Halchenko, 2007; Hanson, et al., 2004; Haxby, et al., 

2001; O'Toole, et al., 2005; Polyn, Natu, Cohen, & Norman, 2005; Shinkareva et al., 

2008). Only a few studies have applied MVPA to decode semantic concept 

representations of concrete objects based on verbal stimuli (Chan, et al., 2011; Just, 

Cherkassky, Aryal, & Mitchell, 2010; Shinkareva, et al., 2011). Compared to visual 

depictions of objects, verbal stimuli are more independent of visual perception and can 

refer to abstract concepts. Whether representation of abstract concepts can be 

distinguished from concrete concepts using MVPA methods is unclear. In this work we 

extend the previous MVPA findings on concept representation by including the abstract 

category that is less dependent on perceptual or motor experiences. The purpose of this 

study was twofold. First, we explored whether MVPA methods could be used to identify 

single trials as abstract or concrete within each individual by decoding functional patterns 

of whole brain activity, thus extending previous MVPA studies of concept representation 

to abstract concepts. We also examined where the discriminating information between 

abstract and concrete concepts is located in the brain by focusing at the spatially localized 

anatomical brain regions that contained sufficient information for identification of 

abstract or concrete concepts on average across participants. Second, we investigated 

whether the representations of abstract and concrete concepts are similar across 
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individuals by training the classifier on all but one participant and then predicting single 

trials as abstract or concrete in the left out participant. 

3.2. Methods 

3.2.1. Participants 

Thirteen participants (six female) from the University of South Carolina 

community participated in this experiment and gave written informed consent in 

accordance with the Institutional Review Board at the University of South Carolina. 

Participants were right-handed, healthy adults and native English-speakers.  

3.2.2. Materials 

Stimuli were word triplets comprised of semantically similar nouns from two 

concrete (tools and dwellings) and two abstract (cognition and emotion) categories. Each 

category contained four exemplars, with four different words in each exemplar. For 

instance, the words knife, scalpel, razorblade and cutlass composed the exemplar cutting 

object within the concrete category tools. For each exemplar, six different triplets were 

selected from all possible permutations of the four words. Because the six triplets in each 

exemplar referred to the same semantic concept, these triplets were regarded as 

repetitions of the same exemplar. The sixteen exemplars were each presented six times, 

with each repetition composed of a unique list of triplets, generating 96 triplets in total (4 

categories × 4 exemplars × 6 repetitions). Triplets were balanced between the abstract 

and concrete categories on word frequency (MAbstract = 27.86 and MConcrete = 31.98, t(94) = 

-0.53, p = .60) and word length (MAbstract = 7.25 and MConcrete = 6.83, t(94) = 1.84, p = .07). 

3.2.3. Procedure 

While being scanned, the participants were asked to make judgments on 
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semantically similar written words, analogous to the synonym judgment paradigm 

(Breedin, Saffran, & Coslett, 1994; Noppeney & Price, 2004; Sabsevitz, et al., 2005). In 

each trial, a word triplet was presented for three seconds, followed by a seven-second 

fixation period. For each triplet, participants were asked to decide during the three-second 

triplet presentation which of two words at the bottom of the display was more similar to 

the word shown at the top. During the presentation of the seven-second fixation, the 

participant was instructed to clear the mind and fixate on the cross at the center of the 

screen. The task was designed to prompt careful evaluation of each item and its 

properties, thus implicitly eliciting the semantic representation of the presented exemplar. 

A long fixation trial of 24 seconds was presented after each repetition of the sixteen 

exemplars. Participants were prompted by the word “Ready?” following the long fixation 

to indicate the beginning of the next repetition. The whole experiment was completed in 

two scanning sessions, with three repetitions in each session. 

3.2.4. MRI acquisition 

Functional images were acquired with gradient echo EPI on a Siemens 3T Trio 

scanner at the McCausland Brain Imaging Center at the University of South Carolina 

with the following parameters: TR = 2200 ms, TE = 30 ms, flip angle = 90°, voxel size = 

3 × 3 × 3.6 mm
3
.  

3.2.5. FMRI data preprocessing 

The data were processed using SPM5 (www.fil.ion.ucl.ac.uk/spm). Data for each 

participant were corrected for head movement by aligning images to the first volume 

based on a six-parameter rigid body transformation. The head movement in any direction 

of any participant was smaller than 1.5 mm. The motion-corrected images were then 
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normalized to Montreal Neurological Institute (MNI) template and re-sampled to 3×3×3 

mm
3
 voxels. 

3.2.6. MVPA methods 

The MVPA analysis steps employed in this work are similar to those that have 

been successfully used in other MVPA studies (Mitchell, et al., 2008; Shinkareva, et al., 

2008). Classifiers were trained on the mean percent signal change (PSC) of functional 

activity for each word triplet in the training set to identify the cognitive states associated 

with processing abstract and concrete concepts. For each participant’s data, the mean 

PSC of each voxel was the ratio of signal difference between word triplets and the 

baseline to the baseline signal. The baseline was computed from the averaged signal in 

the long fixation trials. The signal of each triplet was computed by averaging two 

volumes offset 4.4 s away from the stimulus onset (the third and fourth volumes of one 

trial) to account for the delay of hemodynamic response function. Furthermore, the PSCs 

in each voxel were normalized across triplets to have mean 0, and variance 1, to equate 

variations in different voxels (Pereira, et al., 2009).  

Feature Selection. To reduce the size of the data, relevant features were extracted 

by using voxels with the most consistent responses toward different conditions across 

cross-validation folds (Pereira, et al., 2009). Response stability was computed by 

averaging pairwise correlation coefficients between vectors of repetitions of all 

exemplars (Shinkareva, et al., 2011). The voxels with lowest response stability were 

removed. The rationale of stability-based feature selection was that if a voxel responded 

unsystematically between repetitions across conditions, it was unlikely to contain 

information that is associated with different conditions. This procedure was based on 
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training data only to avoid over-fitting. We explored different numbers of voxels retained 

by feature selection instead of deciding upon an arbitrary threshold.  

Classification within participants. A logistic regression classifier was used for 

abstract vs. concrete two-way classification. As a commonly used classifier, logistic 

regression directly estimates its parameters from the training data (Bishop, 2006). This 

classifier was chosen because it is simple, less likely to generate overfitting compared to 

non-linear classifiers, and has been successfully applied in previous studies (Mitchell et 

al., 2004; Pereira, et al., 2009). To ensure the evaluation of classification performance 

was unbiased, classification accuracy was evaluated using six-fold cross validation 

procedure, where each fold corresponded to one repetition of all exemplars. The 

repetitions were separated by the long fixation period, thus the independence between 

training and test sets was ensured.  

In each cross-validation fold, the trained classifiers were applied to each trial in 

the test set to classify it as abstract or concrete. The accuracy was the proportion of trials 

that were correctly classified. For each participant, the obtained accuracy was compared 

to an empirically generated null distribution, formed by 1000 classification accuracies 

obtained from the same dataset, but with randomly permuted labels. 

In addition, the multinomial logistic regression classifiers were also trained to 

identify each of the 16 exemplars. For simplicity, the number of voxels from a feature 

selection step in this analysis was set to 400. The rest of the procedures of feature 

selection, cross-validation, and significance test were the same as in the main two-way 

classification.  
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Region of interest (ROI) analysis. To investigate how the discriminating 

information is distributed in the brain, the classifiers were trained on data from one of the 

90 anatomically defined regions at a time (Shinkareva, Malave, Just, & Mitchell, 2012). 

ROIs were defined by the automated anatomical labeling (AAL; Tzourio-Mazoyer et al., 

2002). Mean PSC in all gray matter voxels in each ROI was used to train the logistic 

regression classifiers. To access if an anatomical region contained sufficient information 

to decode abstract or concrete concepts on average across participants, the classification 

accuracy for each region was compared to a binomial distribution B(n, p), where n was 

the number of triples, and p is the probability of successfully identifying a triple as 

abstract or concrete under the hypothesis that triples are randomly assigned into the two 

categories (Pereira, et al., 2009). P-values (computed using a normal approximation) 

were obtained for the mean classification accuracy, computed across participants for each 

region. The p-values were compared to significance level at p = .05, corrected for 

multiple comparisons. 

Classification across participants. To test for a commonality in the neural 

representation of abstract and concrete concepts across individuals, classifiers were 

trained on data from all but one participant to identify trials as abstract or concrete in the 

left-out participant. An entropy-based feature selection was applied to retain the voxels 

containing most stable information across individuals. For each voxel, the Shannon 

entropy was computed from the data of twelve individuals in the training set ordered by 

individual exemplars within abstract and concrete categories. Entropy-based feature 

selection has been validated as an efficient index of the voxel sensitivity toward the 

variation of conditions (Poldrack, Halchenko, & Hanson, 2009). For simplicity, the top 
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20% of most stable voxels, i.e., voxels with the lowest entropy values, were selected. For 

each cross-validation fold, the classifier was trained on the PSC data from all but one 

participant, which was the test dataset. This procedure was repeated for all participants. 

Classification accuracy was compared to the empirically generated distribution, formed 

by 1000 classification accuracies obtained from the same dataset, but with randomly 

permuted labels. Accuracies with p-values smaller than .05 were considered significant. 

3.3. Results 

3.3.1. Behavioral results 

There were no significant differences in the mean reaction times across 

participants between judgments on abstract and concrete triplets (MAbstract = 1.66 and 

MConcrete = 1.69, t(12) = -0.85, p = .41). Moreover, none of the individual participant 

showed significantly different reaction times between abstract and concrete triplets (p 

ranged from .08 to .94). These results suggest making judgments on abstract or concrete 

triplets did not differ in difficulty. 

3.3.2. Within-participant classification based on the whole brain  

When classifiers were trained to identify word triplets as abstract or concrete, the 

mean accuracies across participants were significantly greater than chance (p ≤ .05) for 

all threshold levels (Figure 3.1). Classification accuracies for one participant were as high 

as 90.62% (87 out of 96 triplets correctly identified as abstract or concrete). The 

classification accuracies were highest when the numbers of voxels used for classification 

ranged from 50 to 3000. The accuracies were reliably above chance for most participants 

even when all the voxels were included in the analysis. 
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Figure 3.1 Within-participant classification accuracies for identifying trials as 

abstract or concrete, summarized across 13 participants by box plots, are shown as a 

function of different number of voxels. © 2013 Human Brain Mapping 

 

The locations of voxels with largest classifier weights for identifying trial as 

abstract or concrete were distributed in multiple areas in the brain (Figure 3.2). When 

feature selection retained 400 voxels, the most informative voxels for identifying abstract 

concepts that were consistently identified across participants were located in the left 

inferior frontal gyrus, middle temporal gyrus, and posterior cingulate cortex; the most 

consistent informative voxels for identifying concrete concepts were located in the left 

angular gyrus, fusiform gyrus, inferior temporal gyrus, middle frontal gyrus, posterior 

cingulate cortex, and precuneus.
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 (Figure continued) 

 

 

Figure 3.2 Consistency of informative voxels across participants. The most 

informative voxels for decoding abstract vs. concrete concepts representation within 

participants were shown on a surface rendering at three feature selection thresholds: 

retaining 400, 1000, or 3000 voxels. Participants were ordered by within-participant 

classification accuracy. The warm color indicates the top 5% of voxels that were most 

informative for identifying abstract trials. The cool color indicates the top 5% of voxels 

that were most informative for identifying concrete trials. The last row displayed the 

thresholded probability maps (p = 0.05, FWE corrected) of the informative voxels that 

were consistently identified across all 13 participants.
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In addition, classifiers were trained to identify which specific exemplar a participant was 

making similarity judgments on. Classification reached mean accuracy of 14.4% across 

participants for classifying an exemplar into one of the 16 categories (compared to 9.38% 

at p = 0.05 level of significance). Exemplars were reliably (p ≤ .05) identified for 11 out 

of 13 participants. Most of the mistakes that the classifier was making were within the 

same abstract or concrete category (Figure 3.3). Thus, the mental states associated with 

making similarity judgments with either abstract or concrete concepts can be decoded on 

a single trial basis, suggesting the distinct representations of abstract and concrete 

concepts.  

3.3.3. Within-participant classification based on single ROIs  

To investigate whether individual regions contain sufficient information for 

decoding abstract and concrete concepts, classifiers were trained using voxels from only 

one anatomical region at a time. Fifty-two out of the 90 ROIs showed reliable (p ≤ .05) 

classification accuracies on average, across participants. These regions were distributed 

across temporal, frontal, parietal and occipital lobes bilaterally, while the regions with the 

highest accuracies were mostly in the left hemisphere (Figure 3.4). Out of the 52 

informative ROIs, 30 were in the left hemisphere, including the top 15 ROIs with highest 

average accuracies across participants. The left homologues of all the informative right-

hemisphere ROIs also contained information for successful identification. Among these 

bilateral region pairs, the average classification accuracies across participants were higher 

in the left hemisphere, with an exception of the lingual gyrus. Five ROIs, including left 

middle temporal gyrus, left precuneus, left angular gyrus, left middle occipital gyrus and  
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Figure 3.3 Exemplar classification confusion matrix averaged across participants. 

The value of each element indicates the proportion of exemplars identified as the 

corresponding label. © 2013 Human Brain Mapping 

 

left precentral gyrus, showed significant accuracy for all of the participants (Figure 3.5).  

These results were highly comparable to the location of the informative voxels 

weighted by the classifier (Figure 3.2). Thus abstract vs. concrete processing can be 

successfully decoded from multiple single brain regions.  

3.3.4. Across-participant classification based on the whole brain  

Classifiers were trained on data from 12 participants to determine if it was 

possible to identify individual trials as abstract or concrete in the left-out participant. The 

average accuracy across participants of identifying triples as abstract or concrete when 

the classifier was trained on data from other participants was 84.13% (p ≤ .001). Word 

triples for all 13 participants were reliably (p ≤ .05) identified, with the accuracies 
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Figure 3.4 Mean classification accuracies across participants, for trial identification 

as abstract or concrete, are shown for each anatomically defined ROI. Regions with 

significant mean accuracy across participants (p = .05) are shown on a brain template.    

© 2013 Human Brain Mapping 
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Figure 3.5 Classification accuracies for identification of trials as abstract or concrete 

are shown for each ROI and each participant. Significant accuracies (p = .05) are shown 

in color. © 2013 Human Brain Mapping   
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ranging from 62.50% to 93.75% (Figure 3.6). This result indicates the commonality of 

abstract vs. concrete representation across individuals. 

3.4. Discussion 

We were able to successfully identify brain activity patterns as abstract or 

concrete based on single trial data. This study has extended previous results on concrete 

words representation to abstract concepts. Compared with studies that examined 

activation differences in abstract and concrete concept representation, this study suggests 

participants’ mental states during processing of abstract and concrete semantic concepts 

were identifiable from distributed patterns of activity on an individual trial basis. 

Moreover, whether a participant was making similarity judgments on abstract or 

concrete concepts was identifiable solely based on data from other participants, in spite of 

the anatomical and functional variability across individual brains (Fedorenko & 

Kanwisher, 2009). It supports the cross-individual principles of processing semantic 

concept. Classification of mental states across individuals has been previously shown for 

visually depicted objects (Shinkareva, et al., 2008), concrete nouns referring to physical 

objects (Just, et al., 2010; Shinkareva, et al., 2011), lie detection (Davatzikos et al., 2005), 

attentional tasks (Mourao-Miranda, Bokde, Born, Hampel, & Stetter, 2005), cognitive 

tasks (Poldrack, et al., 2009), and voxel-by-voxel correspondence across individuals has 

been demonstrated during movie-watching (Hasson, Nir, Levy, Fuhrmann, & Malach, 

2004). The current study for the first time demonstrates the ability to identify the mental 

states of a participant as processing abstract or concrete concepts based on neural 

activation data from other participants. 

 



www.manaraa.com

 

76 

 

 

 

Figure 3.6 High across-participants classification accuracies for identifying single 

trials as abstract or concrete based on data from other participants. Dashed line indicates 

p = .05 level of significance. © 2013 Human Brain Mapping 

 

Classification within individual anatomically defined regions showed that activity 

patterns in even single regions were sufficient for identifying trials as abstract or concrete. 

The present results of regions with discriminating information show considerable overlap 

with the meta-analysis results based on previous statistical parametric mapping studies 

locating the differences of abstract vs. concrete semantic concept representation (Binder, 

et al., 2009; Wang, Conder, Blitzer, & Shinkareva, 2010). Most regions that were 

previously identified by the meta-analysis were also found to contain information 

sufficient for identification of trials as abstract or concrete in the current study (Table 2.2; 

Figure 3.4). The top six ROIs with the highest average accuracy were also identified by 

the meta-analyses results. However, this single study identified more informative areas 
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compared to the combined results of early lesion studies and neuroimaging. In fact, the 

current results are more comparable to the collection of previous univariate results 

(Figure 2.1). The extensive spatial distribution of discriminating information may reflect 

the lack of semantic context restriction during single word processing. Compared to the 

word specified in a meaningful sentence, single word processing in a semantics-related 

task may stimulate the rich contexts of the word more extensively (Price 2010). 

Although the left ATL is one of the areas that consistently show activational 

differences for abstract > concrete concept processing, activity patterns in the temporal 

pole only result in chance-level accuracies for identifying the two conditions. 

Considering the ATL has been associated with a number of functions related to 

knowledge representation (Simmons & Martin, 2009), we attribute the lack of 

information for the temporal pole in Chapter 3 to the low signal-to-noise ratio of fMRI 

measures at this area due to the susceptibility artifacts (Devlin, et al., 2000; Lipschutz, et 

al., 2001). A possible solution is adjusting MRI acquisition parameters to reduce signal 

loss. 

The left hemisphere was engaged in the abstract vs. concrete concept 

identification to a very large extent. Thirty out of the 45 left hemisphere ROIs showed 

significant accuracies on average across participants. A number of right hemisphere 

regions also held information of abstract vs. concrete differentiation. Previous studies 

have found the activation differences in some of these right hemisphere regions, but with 

low cross-study consistency (Binder, et al., 2005; D'Esposito, et al., 1997; Fliessbach, et 

al., 2006; Grossman, et al., 2002; Harris et al., 2006; Jessen, et al., 2000; Mellet, et al., 
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1998; Perani, et al., 1999; Sabsevitz, et al., 2005; Tettamanti, et al., 2008; Wallentin, et 

al., 2005; Whatmough, et al., 2004).  

The extensive spatial distribution of discriminating information may reflect the 

lack of semantic context restriction during single word processing. Compared to the word 

specified in a meaningful sentence, single word processing in a semantics-related task 

may stimulate the rich contexts of the word more extensively (Price 2010). Even though, 

this is the first time that such a large number of informative brain areas for abstract vs. 

concrete concept representation were identified in a single experiment. It is quite striking 

that single regions contain, on their own, enough information to decode the presented 

concepts. It is likely to be the case that sufficient information for category identification 

is represented in several different regions, lending a somewhat different interpretation to 

the notion of a distributed representation. Different areas may contribute to differences in 

abstract vs. concrete representation in various ways, for example in terms of the richness 

of semantic context, coding system, retrieval strategy, or working memory. A number of 

regions identified in the current study have been shown in previous studies using 

statistical parametric mapping, but not in the same experiment, with a limited number of 

stimuli in a single task. One of the reasons, based on the current results, may be the lack 

of sensitivity in detecting the differences. These results suggest that the representation of 

abstract and concrete concepts were differentiated on various aspects rather than a single 

mechanism. Further studies may help illuminate the representational content in regions 

that support category identification across stimulus formats, such as studies using item-

repetition priming (Grill-Spector, Kushnir, Edelman, Avidan, & Itzchak, 1999; James, 
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Humphrey, Gati, Menon, & Goodale, 2002; Vuilleumier, Henson, Driver, & Dolan, 2002) 

or Dynamically Adaptive Imaging (Cusack, Veldsman, Naci, Mitchell, & Linke, 2012). 

3.5. Conclusion 

By using multi-voxel pattern analysis, this study successfully identified brain 

activity patterns as abstract or concrete based on single trial data, suggesting participants’ 

mental states during processing of abstract and concrete semantic concepts were 

identifiable from distributed patterns of activity on an individual trial basis. The ability to 

identify whether a participant was representing abstract or concrete concepts solely from 

other participants’ data suggests the cross-individual principles of organizing this type of 

knowledge are similar.  
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Chapter 4 

Using functional connectivity patterns to identify abstract and concrete 

concept representations 

4.1. Pattern classification beyond localized information 

4.1.1. Context availability hypothesis and functional connectivity 

Semantic memory relies on anatomically widespread and functionally complex 

neural components with high interactivity (Binder, et al., 2009; Bookheimer, 2002). The 

review and experiments in the previous sections have clearly indicated that category-

specific information is represented in a more distributed pattern than previously thought. 

Specifically, the successful multivoxel classification on a whole brain level suggests that 

co-activation patterns across various brain regions carry information that distinguishes 

between the abstract and concrete categories. Do the patterns of interaction among 

regions differ for processing abstract and concrete concepts? From a theoretical 

perspective, this question pertains to some aspects in the context-availability hypothesis 

that remain unanswered by the previous studies. Both the univoxel and multivoxel studies 

have strongly suggested the recruitment of modality-specific, visual sensory and imagery 

systems in processing concrete concepts, supporting the hypothesis that the 

representation of concrete concepts can resort to the additional modality-specific systems. 

By contrast, the context availability hypothesis has been examined in indirect and limited 

ways, partly due to its focus on the extensiveness of semantic associations instead of 
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identifying separate processing systems. The findings that verbal semantic system is 

involved in the processing of abstract and concrete concepts to different extents do not 

directly inform about the variety or density of the associated semantic content. To address 

these questions, a method that directly measures the intercorrelation among brain regions 

for different conditions is more suitable than the approach that investigates the 

information localized in segregated spatial units. The presumptions for mapping context-

availability theory onto the spatial correlation between brain regions are the modularity of 

brain function, and the distribution of brain regions involved in semantic processing. The 

structure or pattern of the semantic association is assumed to be reflected in the patterns 

of connectivity among brain regions, even though the units of observation, namely voxel 

and between-voxel correlation, do not represent the node or link in the hypothetical 

semantic space. The current work aimed to test the context-availability hypotheses by 

examining whether the patterns of functional connectivity associated with processing 

abstract concepts are different from the patterns associated with concrete concepts.  

We translated the context-availability hypothesis to functional connectivity 

language from two perspectives. First, the hypothesis of retrieval difficulty predicts 

different patterns of functional connectivity of the semantic executive functioning area 

with other regions for processing abstract and concrete concepts. We assumed the 

difference of intrinsic difficulty between the two categories of concepts was associated 

with different retrieval strategies and efforts. The connectivity between the semantic 

executive functioning area and other systems involved was expected to reflect such 

category-specific differences. Based on rationale discussed in the previous chapters, we 

considered the left inferior frontal gyrus as the semantic executive functioning area. 
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Second, the hypothesis of contextual constraints predicts difference in the large-scale 

connectivity across multiple regions involved in the semantic processing. Abstract 

concepts were considered having greater variety or looser constraints on semantic 

contexts, therefore we expected the patterns of whole-brain voxelwise connectivity for 

processing abstract and concrete concepts to be different. In addition, we also 

investigated the voxelwise connectivity patterns within the left middle temporal gyrus 

and angular gyrus, which were considered supramodal semantic areas based on a 

comprehensive quantitative review on semantic memory (Binder, et al., 2009). 

4.1.2. Classification based on patterns of condition-specific connectivity 

Functional connectivity in the brain refers to the temporal correlations in neural 

activity among distinct brain regions (Friston, 1994). Although the majority of 

applications of functional connectivity to resting-state network in the brain, some studies 

have illustrated possible methods that allow the investigation of connectivity patterns 

associated with experimental conditions (Dodel et al., 2005; Rissman, Gazzaley, & 

D’Esposito, 2004). However the condition-specific differences were not statistically 

evaluated in these studies, likely due to the lack of sensitivity of univariate tests. The 

present study used the MVPA framework to test whether the condition-specific 

connectivity patterns learned from a group of individuals can be applied to identify the 

condition of data from a new individual. The temporal resolution of fMRI measures 

limits the examination of connectivity differences within individuals, whereas the cross-

individual classification allows investigating the condition-specific differences for each 

individual based on the data of others. We used the same experimental paradigm as in 
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Chapter 3, with twelve additional participants to reach a sample size of 25 for cross-

individual classification.  

Previous studies have applied MVPA approach to classify connectivity-based 

fMRI data for different mental states, such as movie watching vs. resting (Richiardi, 

Eryilmaz, Schwartz, Vuilleumier, & Van De Ville, 2011), or tasks associated with 

episodic memory, music lyrics, and mathematical operation (Shirer, Ryali, Rykhlevskaia, 

Menon, & Greicius, 2012). These studies were able to use relatively small numbers (≤ 

100) of nodes on a whole-brain level to identify fundamentally different cognitive states. 

The present study aimed to detect the comparatively subtle differences in category-

specific semantic processing. Therefore, we investigated the voxel-by-voxel connectivity 

patterns both at a whole-brain level and with pre-defined regions of interests. The 

rationale of the procedure is that if connectivity patterns are different for the 

representations of abstract and concrete concepts, and such differences are consistent 

across individuals, we should be able to identify whether an individual is processing an 

abstract or a concrete concept based on the connectivity patterns from other individuals. 

4.2. Methods 

4.2.1. Participants 

Twenty-five participants (thirteen female) from the University of South Carolina 

community participated in this experiment and gave written informed consent in 

accordance with the Institutional Review Board at the University of South Carolina. 

Participants were right-handed, healthy adults and native English-speakers. Thirteen of 

these participants were included in the study reported in Chapter 3. 
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4.2.2 – 4.2.4 

See section 3.2.2 – 3.2.4 for Materials, Procedure and MRI Acquisition. 

4.2.5. FMRI data preprocessing 

The data were processed using SPM5 (www.fil.ion.ucl.ac.uk/spm). Images for 

each participant were corrected for head movement by aligning images to the first 

volume based on a six-parameter rigid body transformation. The linear trend in images 

for each participant was then removed to correct the signal intensity drift. The images 

were normalized to Montreal Neurological Institute template and re-sampled to the voxel 

size of 3 × 3 × 3 mm
3
 for examining the connectivity within the general semantic systems, 

or re-sampled to 10 × 10 × 10 mm
3
 voxels for computing the whole-brain connectivity 

matrix and connectivity seeded in the left IFG. 

4.2.6. Preliminary test: SPM on seed-based connectivity 

We first examined if the condition-specific difference of the connectivity to the 

left IFG could be located in any region. This approach was analogous to the univoxel 

SPM approach on the activity maps. We first examined whether the connectivity of any 

voxel to the seed region showed significant response to the abstract or concrete condition. 

The correlation maps at the resolution of 3 × 3 × 3 mm
3
 voxel for the seed region with the 

other voxels for abstract and concrete conditions were converted to the z-maps by 

Fisher’s Z transformation. Random-effect group level analyses were performed on the z-

maps for each condition respectively (Rissman, et al., 2004). 

4.2.7. Connectivity-based MVPA 

The cross-participant MVPA was performed on three types of connectivity 

matrices as indicated by the hypotheses: the whole-brain voxel-by-voxel connectivity, the 
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connectivity between the seed of left IFG and other voxels in the brain, and the voxel-by-

voxel connectivity within the semantic areas. The regions of interests were defined by the 

anatomical masks from Anatomical Automatic Labeling (Tzourio-Mazoyer, et al., 2002). 

The measurement of connectivity was the Pearson correlation coefficient of weighted 

time series between pairs of regions. The condition-specific weight was estimated by 

convolving the vector of onsets for abstract or concrete condition with the canonical 

hemodynamic response function. To ensure the real-valued correlation all the values in 

the weight vector are made positive by taking the absolute value (Dodel, et al., 2005). 

Preprocessed time series were weighted for each condition to generate two correlation 

matrices that represented the connectivity patterns for abstract and concrete conditions.  

The pattern classification procedure was performed to test the cross-individual 

consistencies of the patterns for abstract and concrete conditions. A similarity-based 

classifier was trained on data from all but one participant, to identify the test data, i.e. 

connectivity matrices for the left out participant. This procedure was implemented 

iteratively, leaving out each of the participants once. Classifications were performed 

either on all the unique connections in the matrix or with feature selection. To select 

connections that responded to the experimental conditions, matrices in the training set 

were first transformed to Fisher’s Z score. One sample t-tests against the null hypothesis 

of no response were then performed for each connection across all the participants in the 

training set, for abstract and concrete matrix respectively. The connections with the 

highest t values in either condition were selected jointly for both conditions, so that the 

feature selection was orthogonal to the classification categories. Because there is no one 



www.manaraa.com

 

86 

 

preferred way to choose the threshold, we have studied abstract and concrete condition-

specific matrices at multiple threshold levels. 

For the training set, weighted average matrices for abstract and concrete 

conditions were generated by weighting each participant’s matrix by how similar they 

were to each other (Abdi, Dunlop, & Williams, 2009; Shinkareva, et al., 2011; 

Shinkareva, Ombao, Sutton, Mohanty, & Miller, 2006). Pairwise similarity between 

participants was measured by the RV coefficient (Robert & Escoufier, 1976), a 

multivariate generalization of the Pearson correlation coefficient to matrices. Each 

participant’s data were weighted by the first eigenvector of the similarity matrix which 

was scaled to sum up to one. 

For each test matrix, the cosine similarity scores with abstract and concrete 

training matrices was computed, and the test matrix was labeled according to the training 

condition with the higher similarity score (Mitchell, et al., 2008). Classification was 

evaluated based on whether the hit score was higher than the miss score across the two 

conditions. The overall classification accuracies were averaged across participants.  

To determine the significance of classification accuracy, the distribution of 

accuracies under the null hypothesis of no condition-specific distinction was empirically 

generated. This distribution was formed by 1000 accuracies obtained from the same 

dataset and procedure, except that the elements in training matrices were randomly 

reordered in each of the 1000 iterations.  

4.3. Results 

4.3.1. Seed-based connectivity: SPM 

Before testing the hypotheses by using MVPA, we localized the condition-
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specific connectivity differences for the left IFG. First, regions that were significantly 

connected to the left IFG in the two conditions across participants were found to be 

considerably overlapping (Figure 4.1). 

We then tested condition-specific difference on the connectivity maps. The 

difference z-maps were obtained respectively for concrete > abstract and abstract > 

concrete comparisons. The comparisons between the two conditions did not reveal any 

voxel whose connectivity to the seed region showed significant difference, even at a 

liberal threshold of uncorrected p ≤ .001, cluster size = 2 voxels. Nevertheless, the maps 

of the t tests implicated several regions with a trend of condition-specific connectivity 

strengths to the seed. Compared to abstract concepts, concrete concepts tended to elicit 

greater connectivity to the seed IFG region in the bilateral inferior temporal gyrus, from 

the posterior lateral to the medial anterior portion. The bilateral angular gyrus also 

appeared to show stronger connectivity to the seed region for concrete concepts. The left 

medial superior frontal gyrus, a lower portion of the left postcentral gyrus, the right 

lateral globus pallidus, a cluster at the posterior cingulate cortex and retrosplenial region, 

and the anterior prefrontal cortex also tended to associate with the seed region to a greater 

extent for concrete concepts (Figure 4.2). In contrast, the regions showing a tendency of 

stronger connectivity to the seed region for processing abstract concepts included a 

stream from the supramarginal gyrus down to the pSTS and the relatively medial section 

of middle temporal gyrus, a cluster around the lower portion of the precentral gyrus, and 

the middle occipital gyrus. The cross-individual commonality of connections that 

responded to both of the conditions and the trend of univariate differences between 

conditions suggested that the connectivity-based MVPA was promising to identify 
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condition-specific connectivity patterns. 

 
 

Figure 4.1 Voxels with significant (FWE corrected, p ≤ .05, cluster size = 5) 

connectivity to the left IFG for concrete (red) and abstract (blue) concept processing; 

spatial resolution at 3 × 3 × 3 mm
3
. The overlapped voxels of the two conditions are 

shown in magenta.   

 

 
 

Figure 4.2 The map of t-values for contrast concrete > abstract (hot) and abstract > 

concrete (cold) on MNI template of multiple slices and a rendered brain surface.  
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4.3.2. Classification on connectivity between the left IFG with other regions 

We were able to identify abstract or concrete concepts associated with 

connectivity patterns of the left IFG with other brain areas with accuracies that were 

significantly above chance at multiple threshold levels (Table 4.1). The classification 

accuracy based on all the connections in the brain was 72%. Using the connections that 

significantly responded to either condition (FWE corrected) increased the classification 

performance to an accuracy of 80%. To investigate the connections that were included in 

the thresholded connectivity maps, the same one-sample t-tests used for feature selection 

were performed on all the participants and thresholded at p of .05 (FWE corrected). First, 

the selected voxels were distributed in multiple regions (Figure 4.3), comparable to the 

results of the analyses performed on the resolution of 3 × 3 × 3 mm
3
 (i.e., Figure 4.1). 

Second, the voxels selected by the data from abstract and the concrete conditions also 

largely overlapped. These findings indicated that (1) the selections of voxels by the 

feature selection for classification were not dominated by either of the two conditions, 

and (2) the selected voxels were not discriminative to the conditions at univoxel level. In 

other words, the successful classifications were unlikely to be driven by the bias in voxel 

selection or the univariate differences.  

4.3.3. Classification on voxel-by-voxel connectivity 

The whole-brain group mask for the current experiment consisted of 1509 voxels 

common to all 25 participants. Classification based on the whole-brain connectivity 

patterns with no further feature selection resulted in 84% accuracy. The above-chance 

classification accuracies were stable at a range of numbers of connections (Table 4.2). 

In addition, we investigated the voxel-by-voxel connectivity pattern at the voxel 
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Table 4.1 Classification accuracies at multiple feature selection threshold levels 

based on connectivity to the left IFG  

 

Threshold of feature selection 1 .05, FWE corrected .1 .05 

Accuracy 0.72* 0.8* 0.84* 0.72* 

Averaged number of connections 1401 484.48 212 112.16 

*: p ≤ .05. 

 

Table 4.2 Classification accuracies at multiple feature selection threshold levels 

based on whole-brain voxel-by-voxel connectivity. 

 

Threshold of feature selection 1 0.05 0.01 0.001 

Accuracy 0.84* 0.92* 0.72* 0.56 

Averaged number of connections 2277081 179144.40 39122.80 5447.68 

*: p ≤ .05.  

 

  

Figure 4.3 Voxels with significant (FWE corrected, p ≤ .05) connectivity to the left 

IFG in concrete (red) and abstract (blue) concept processing; spatial resolution at 10 × 10 

× 10 mm
3
. The overlapped voxels of the two conditions are shown in magenta.  

 

size of 3 × 3 × 3 mm
3
 within the left MTG and angular gyrus. Classification accuracies 

were significant when feature selection was used (Table 4.3). 

4.4. Discussion 

The present study examined the cross-individual consistencies of the connectivity 

patterns for abstract and concrete concept representations based on fMRI data.   
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Table 4.3 Classification accuracies at multiple feature selection threshold levels 

based on voxel-by-voxel connectivity in the left MTG and angular gyrus.  

 

Threshold of feature 

selection 1 0.05 

 

0.002 0.001 

 

0.0001 

 

0.00001 

Accuracy 0.56 0.64* 0.68* 0.76* 0.52 0.6 

Averaged number of 

connections 

1615503 10382.44 4066.68 2093.28 253.24 26.32 

*: p ≤ .05.  

The findings indicated systematic differences in functional connectivity between abstract 

and concrete conditions. The commonality across participants in the connectivity patterns 

elicited by abstract and concrete words enabled the cross-participant classification. 

Context-availability theory attempted to interpret the representational difference 

between abstract and concrete concepts by the difference in a single mechanism. 

Although it has been shown that the modality-specific systems are involved in category-

specific concepts to different degrees, these findings have not ruled out the possibility of 

predictions about the context-availability. The current evidence was consistent with the 

hypothesis that the representation of abstract and concrete concepts also differs from the 

semantic association perspective. First, the successful classification on seed-based 

connectivity indicated that the property of retrieved information or retrieval strategy for 

processing abstract and concrete concepts were different, even though the regions 

involved were considerably overlapping. Although the seed-based SPM test did not 

reveal any statistically meaningful difference between abstract and concrete concepts, the 

clustering of voxels with a difference between conditions suggested the possibility for the 

connectivity of those regions to the left IFG to be condition-specific. Consistent with the 
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findings of locating activational differences, the inferior temporal gyrus was found to be 

more involved in the processing of concrete concepts whilst the middle temporal gyrus 

was found to engage more in the processing of abstract concepts. The results also 

suggested that various regions in the temporal-parietal junction area were involved in 

conceptual representation in different ways, with the posterior area being involved more 

in processing concrete concepts and the anterior area in abstract concepts. Similarly, the 

anterior temporal lobe, particularly the medial section, presented complex patterns for 

representing the two categories of concepts. In addition, condition-specific differences 

appeared to present at the lateral area in the posterior and medial area in the anterior 

section in the temporal lobe. The overall patterns of connectivity suggested that the 

retrieval of knowledge about concrete concepts was more localized in several regions, 

whereas retrieving abstract concepts was associated with a more distributed network. 

Second, the patterns of intercorrelations among regions involved in semantic 

processing showed category-specific differences. The successful classification based on 

all the voxels in the brain indicated such differences were represented in widespread 

areas. Future study is required to characterize the differences in connectivity patters by 

using network analyses approaches. The unstable performance of identifying connectivity 

patterns of the supramodal semantic areas as abstract or concrete could be attributed to 

several factors, including the lack of distinguishable patterns between the two conditions, 

the lack of cross-individual consistency, and the vulnerability to noise at relatively 

smaller voxel size. It is possible that the functional organization represented by the 

connectivity was different from that by the activation-based results. Hence model-free 
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network extraction methods would be useful to explore the functional structure for further 

investigation. 

4.5. Conclusion 

The condition-specific connectivity patterns across the whole-brain were 

distinguishable between abstract and concrete concept representations, and these 

differences were consistent across participants. Our findings provided supporting 

evidence for two aspects of the context-availability theory that accounted for the 

representational difference between abstract and concrete concepts, namely the 

differences of retrieval difficulty and strategy, and the differences of semantic contextual 

constraints. 
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Chapter 5 

The role of general semantic systems in the representation of person-specific 

knowledge: An application of cross-modal MVPA 

5.1. Introduction 

In research of semantic knowledge representation in the brain, one long-standing 

question is whether common neural responses exit between different stimuli presentation 

formats of the same concept. For instance, processing pictures of animate vs. inanimate 

objects results in systematically different brain activities, and reading words referring to 

these two categories of objects also causes a difference in brain activities, how do we test 

whether the differences are dependent of presentation format, or due to supramodal 

representations? Such questions are highly compatible with MVPA’s framework of 

prediction, and can be translated to MVPA languages, such as, “given that the response 

patterns of animate vs. inanimate object processing are identifiable in picture or words, is 

it possible to predict which categories of words the participant is reading based on data of 

viewing pictures?” Accurate classifications will suggest a commonality of distinguishable 

animate vs. inanimate representations between words and pictures. A recently study used 

this method to verify the identifiable common neural states across pictorial and verbal 

stimuli of tools and dwellings by successful classification in both directions (Shinkareva, 

et al., 2011). 
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This cross-format prediction approach, characterized by using heterogeneous data 

for training and test sets, is a useful tool to demonstrate the representational commonality 

across formats or modalities of stimuli. The current experiment aimed to illustrate the 

application of this approach on examining the role of general semantic system on person-

specific knowledge. 

The biographical knowledge about familiar people is a significant component of 

semantic memories and plays important roles in various aspects of life. 

Neuropsychological cases of semantic deficits on person-specific knowledge suggest the 

possibility that such information is represented separately from other domains of 

knowledge (Ellis, Young, & Critchley, 1989; Evans, Heggs, Antoun, & Hodges, 1995; 

Thompson et al., 2004). The reports of cases with relatively preserved person-specific 

knowledge in the context of impaired general semantics further suggest a dissociation of 

person-specific and general semantic memory (Lyons, Kay, Hanley, & Haslam, 2006; 

Thompson, et al., 2004). However, this hypothesis is subject to questionings at multiple 

levels. First, certain confounders may exist in the tasks used for person-specific vs. 

general semantics and the stimuli per se in these studies, such as the strength of semantic 

association among stimuli within the same condition (e.g., the overall semantic distance 

for a stimulus pool with names of musicians and politicians can be different from that for 

a stimulus pool with animals and artifacts), the salience of the given property to the 

object in property verification tasks (e.g., the function as to objects can be of different 

importance from the occupation as to people), the semantic density of each stimulus, etc. 

The activity of regions for processing person-specific information has been found to 

relate to the amount of knowledge associated with the concept (Desai, Tadimeti, & 
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Binder, 2012), suggesting the possible alternative interpretation of the role for these areas. 

Second, the localization of neural substrates for person-specific knowledge has revealed 

discrepancies in both neuropsychological and functional imaging literatures (Ellis, et al., 

1989; Gorno-Tempini et al., 1998; Hodges & Graham, 1998; Leveroni et al., 2000; 

Miceli et al., 2000). It is noteworthy that the reported areas have considerable overlap 

with the neural circuits for general semantic memory, such as ATL, pSTS/MTG, the 

precuneus, etc. (e.g., Desai, et al., 2012; Gorno-Tempini, et al., 1998; Leveroni, et al., 

2000). Third, the impairments of person-related knowledge in some reported cases co-

occurred with impaired knowledge of other domains, such as living things (Hanley, 

Young, & Pearson, 1989) or concepts with high uniqueness, such as geographical shape 

or famous products and buildings (Ellis, et al., 1989; Saetti, Marangolo, De Renzi, 

Rinaldi, & Lattanzi, 1999). These findings are compatible with the argument that deficits 

on person-specific knowledge essentially reflect impaired general semantic memory 

system, to which the knowledge with low semantic density, or high uniqueness, is more 

vulnerable. 

We hypothesized that the representation of person-specific knowledge partly 

relied on the general semantic system. The current study examined whether the 

multivoxel activations in the brain areas that were associated with semantic memory 

showed distinguishable patterns for processing familiar vs. unfamiliar items on a single 

trial basis. Furthermore, we used a cross-modal MVPA to examine whether the activity 

patterns associated with general semantic processing can be applied to identify the 

processing of familiarity. 
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5.2. Methods 

5.2.1. Participants 

Five right-handed, native English-speakers with no history of neurological illness 

participated in this study. Written informed consents were obtained from the participants 

prior to the experiment in accordance with the protocol sanctioned from Medical College 

of Wisconsin and Marquette University Institutional Review Boards.  

5.2.2. Materials 

The stimuli for the semantic task were 100 real words and 100 pseudowords 

matched on various low-level properties. The real words condition contained 50 abstract 

words and 50 concrete words. These three categories of stimulus (concrete, abstract and 

pseudowords) were matched on letter length, phoneme length, mean positional bigram 

frequency (MPBF) and orthographic neighborhood size using phonological data and 

frequency counts from English Lexicon Project database (Baayen, Piepenbrock, & Van 

Rijn, 1993; Balota et al., 2007). 

The stimuli for the person-specific knowledge task included names of known 

(famous or personally familiar) or unknown persons and places. Each category of stimuli 

(famous person, famous places, personally familiar person, personally familiar places, 

unfamiliar person, or unfamiliar places) consisted of 40 items. The famous people and 

places list which was used for all subjects was constructed such that most items were 

familiar to the subjects. The personally familiar people and places list was provided by 

the subjects a few days before the experiment. The unknown people and places were 
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which were also common for all the subjects were collected from the telephone directory 

and the web and were verified using ratings. 

5.2.3. Procedures 

While being scanned, participants were instructed to make lexical decisions on 

words or pseudowords in the semantic task, and to make familiarity judgments on names 

of items in the person-specific knowledge task. Both tasks were implemented in event-

related design, with each item presented for 1 s in pseudo-random order with jittered 

intervals of 2.5 - 12 seconds. Each of the tasks consisted of 4 imaging runs. 

5.2.4. MRI acquisition 

MR images were acquired on a 3T long bore scanner (GE Medical Systems, 

Milwaukee, WI). Functional data consisted of gradient echo planar images, with TR = 

2500 ms, TE = 20 ms, voxel size = 1.5 × 1.5 × 2 mm3. Structural T1 weighted images 

were collected using a spoiled gradient-echo sequence , with TR = 8.2 ms TE = 3.2 ms, 

flip angle = 12°, FOV = 240 mm, 256 × 224 matrix, slice thickness = 1 mm. Images were 

collected with oblique partial brain acquisition, which covered the temporal lobe, inferior 

frontal and the supramarginal gyri in 34 slices. 

5.2.5. FMRI data preprocessing 

The AFNI software package (Cox, 1996) was used for image analysis. Images 

were despiked by replacing the extreme value in a voxel based on those of its neighbors 

using interpolation. Motion artifacts were minimized by with-in-participant registration 

of echo planar image volumes. Estimates of the three translation and three rotation 

movements at each point in each time-series were computed during registration. The 

mean signal in the ventricles, white matter areas and regions outside the brain were 
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estimated to be included as covariates of noise in the general linear models along with the 

head motion parameters. The mean and linear trends across time in each imaging runs 

were removed on a voxel basis. 

5.2.6. MVPA methods 

Data extraction  

The data for MVPA were the beta estimate of the general linear model for each of 

the trials in a task at each voxel. Trials on which errors occurred were excluded from the 

model. For each individual trial, event-related deconvolution analysis of the time-series 

was used to estimate the hemodynamic response at each voxel. The head motion 

parameters and noise parameters were included in the regression model as covariates. 

The resulting maps for each participant were linearly resampled in standard stereotaxic 

space to a voxel size of 1 × 1 × 1 mm
3
 and spatially smoothed with a 6 mm full-width-

half-maximum Gaussian kernel to compensate for variance in anatomical structure.  

Feature selection  

Discriminative feature selections were used for both the within-modal and cross-

modal classification. For the within-modal classifications (training and testing sets were 

from the same task), to select voxels with different responses between conditions in each 

task, two-sample t-tests were performed in a leave-one-trial-out cross-validation 

procedure, so that the selected voxels were blind to the test set.  

For the cross-modal classifications, we used the group level contrast map to select 

voxels for each task. Event-related deconvolution analyses were used to estimate the 

hemodynamic response to each condition, i.e. word and pseudoword for the semantic task, 

and familiar and unfamiliar items for the person-specific knowledge task. The head 
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motion parameters and noise parameters were included in the regression model as 

covariates. Contrasts between conditions were then performed under the general linear 

model for each task to identify the differences of response between conditions within 

each voxel. The contrasts for the two tasks were word – pseudoword and familiar – 

unfamiliar respectively. The resulting contrast maps for each participant were linearly 

resampled in standard stereotaxic space to a voxel size of 1 × 1 × 1 mm
3
 and spatially 

smoothed with a 6 mm full-width-half-maximum Gaussian kernel to compensate for 

variance in anatomical structure. The normalized and smoothed maps were then subject 

to a random effects analysis comparing the coefficient values to a null hypothesis mean 

of zero across participants.  

Voxels with highest absolute values of the contrast were selected for the training 

and testing. We examined the classification performance on a range of numbers of voxels 

to examine the reliability of classification.  

Classification 1: Within- modal classification  

The purpose of within-modal classifications was twofold. The first purpose is to 

validate the MVPA procedure for decoding information content in this dataset for further 

analyses. The second purpose is to test the hypothesis that regions included in the 

semantic processing contained sufficient information to identify stimuli as being familiar 

or unfamiliar. Within-modal classification was conducted to identify word vs. 

pseudoword trials in the semantic task. Logistic regression classifiers were trained on all 

but one trial per condition to identify the left-out one as being word or pseudoword.  

Classification 2: Familiarity and semantic processing  

Classifiers were trained on the beta estimate in the semantic task to identify the 
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conditions of processing familiar and unfamiliar items in the person-specific knowledge 

task within each participant, and vice versa. Logistic regression classifier was used within 

each participant’s data. Classification accuracies were the average performance across all 

the test trials. 

Significance tests  

The chance accuracy for the two-way classification was expected to be 50%. To 

determine the significance of accuracy, the obtained classification accuracy was 

compared to a binomial distribution B(n, p), where n was the number of triples, and p is 

the probability of successfully identifying a triple as abstract or concrete under the 

hypothesis that triples are randomly assigned into the two categories. P-values (computed 

using a normal approximation) were obtained for the mean classification accuracy, 

computed across participants for each region. The p-values were compared to 

significance level at p = .05. 

5.3. Results 

5.3.1. Within-modal classification 

Within-modal classification was conducted to identify word vs. pseudoword trials 

in the semantic task. We were able to identify individual trials as word or pseudoword 

with above-chance accuracies for all of the participants by using a large range of numbers 

of voxels. Using fewer or more voxels resulted in a steady decrease in the classification 

performances for some participants (Figure 5.1). 

We were also able to identify individual trials as being associated with familiar or 

unfamiliar people or places for most of the participants with above-chance accuracies. 
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Figure 5.1 Classification accuracies for identifying trials as word or pseudoword, 

summarized across all the participants by box plots, are shown as a function of different 

number of voxels. 

 

The numbers of voxels included in successful classifications were in a smaller range 

compared to that for identifying word vs. pseudoword (Figure 5.2). 

5.3.2. Cross-modal prediction 

To test the hypothesis that the activity patterns processing of person-specific 

knowledge relies on the semantic system, classifiers were trained on semantic tasks and 

tested on person-specific knowledge tasks, and vice versa. Classification accuracies were 

significant for one or two out of five participants in both directions (Figure 5.3 and Figure 

5.4). The mean accuracies suggested that training on semantic task and testing on person-

specific knowledge task resulted in higher accuracy than training on person-specific 

knowledge task and testing on semantic task. 
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Figure 5.2 Classification accuracies for identifying trials as familiar or unfamiliar 

items, summarized across all the participants by box plots, are shown as a function of 

different number of voxels. 

 

5.4. Discussion and summary 

The current study investigated the role of the general semantic systems in 

representing person-specific knowledge. By using the activity patterns in the temporal 

lobe, inferior frontal and the supramarginal gyri, we were able to distinguish not only 

between word and non-word, but also between the names of people and places that were 

familiar and unfamiliar to the participants. The successful identification of familiarity in 

the brain regions associated with semantic memory indicated shared neural substrates for 

processing person-specific knowledge and semantic knowledge. Moreover, this study 

illustrated the application of MVPA as a cross-modal prediction approach by 
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Figure 5.3 Classification accuracies for identifying trials as familiar or unfamiliar 

items based on patterns distinguishing words and pseudowords are shown for each 

participant as a function of different number of voxels. Each line represents a participant.  

 

investigating the role of general semantic system on person-specific knowledge. Results 

suggested the possibility that person-specific knowledge was represented partly using the 

general semantic systems (see section 6.2.2 for discussion on further application of this 

approach). On the other hand, the trend that training on semantic task and testing on 

person-specific knowledge task resulted in a trend of higher accuracy than training on 

person-specific knowledge task and testing on semantic task suggested that the 

representation of person-specific knowledge also relied on unique activity patterns that 

were not shared with the representation of semantic knowledge.  
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Figure 5.4 Classification accuracies for identifying trials as word or pseudoword 

based on patterns distinguishing familiar and unfamiliar items are shown for each 

participant as a function of different number of voxels. Each line represents a participant. 

 

It should be noted that the current experiment with rapid presentation was 

designed for other purposes, which was not ideal for MVPA. The accuracies for word vs. 

pseudoword identification were not as high as expected, suggesting the noisy feature of 

this dataset. Future studies may use optimized slow event-related design to separate 

signals from contiguous trials. 
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Chapter 6 

General discussion 

6.1. Summary and implications 

The representation of semantic knowledge in the brain is an important aspect of 

the cognitive functioning. Neuroimaging studies not only validate the hypotheses derived 

from lesion studies, but also provide further information about the localization problem 

and implications to the organizational principles of semantic knowledge in the brain. The 

development of novel methods for analyzing fMRI data allows utilizing the rich 

information to investigate a broad research question from various complementary 

perspectives. This dissertation focused on two perspectives, namely the representational 

difference between concrete and abstract concepts, and the application of multivariate 

analyses to semantic processing in the brain. A joint examination at the results suggested 

that when the processing difficulty was controlled, the concreteness of a concept affected 

the neural mechanisms involved in the processing. These differences were presented on 

multiple aspects. Different regions were activated to different degrees for the 

representations of abstract and concrete concepts. Concrete concepts relied more on the 

perceptual and imagery systems, whereas the processing of abstract concepts was more 

demanding in retrieving relevant knowledge and discriminating among the competitor 

and relied more on the supramodal verbal systems. Besides the activational differences 

localized in specific regions, the category-specific effects were found in widely 

distributed areas, in terms of both the activity patterns in segregated sites and the 
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intercorrelations among regions. It is unlikely that the effects of concreteness can be 

attributed to single isolated cognitive process. 

6.1.1. Implications on the theories accounting for the concreteness effects 

The work in this dissertation indicated that the original, strong versions of both 

the dual coding and context availability theories are insufficient to account for the 

concreteness effect. On the one hand, the selective involvement of posterior ventral 

temporal area, the precuneus and posterior cingulate cortex implicated that the 

representation of concrete concepts drew on modality-specific, particularly visual 

perceptual and imagery systems. On the other hand, the distinct patterns of inter-regional 

correlations at a scale of whole brain suggested the associational contextual differences 

for processing abstract and concrete concepts. Using the left IFG as the executive 

functioning area for semantic processing, the distinguishable pattern of its connection to 

other regions indicated that the online processing of abstract and concrete concepts also 

differed in the way of how the semantic information was retrieved. In summary, the 

results reported in this dissertation suggested that the representational differences 

between abstract and concrete concepts occur at various levels: the dependence on 

modality-specific perceptual systems, the organization of associations among different 

semantic-related systems, and the difficulty and strategy of retrieving contextual 

information.  

6.1.2. Implications on the functional anatomy of semantic processing 

The large body of literatures on the representation of object-related concepts has 

provided crucial information of the roles of various brain areas in semantic processing. 

Combining these findings with the current results suggested some trends of the perceptual 
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to semantic representation of concepts (Figure 6.1). The anterior temporal lobe and the 

left angular gyrus and surrounding areas, which were identified in the meta-analyses, are 

located adjacent to, if not overlapping with, the areas that converge multimodal inputs 

and represent supramodal conceptual knowledge about objects. Considered as two 

supramodal centers, the anterior temporal lobe is thought to process integrative fine-grain 

object discrimination, while the pSTS/MTG is thought to hold the multisensory 

information, as is discussed in section 1.1.2. Considered as two semantic processing areas, 

the left angular gyrus has been associated with complex information integration, general 

semantic knowledge retrieval (Binder, et al., 2009), and the anterior temporal area has 

been argued to be a supramodal hub for the processing of word meaning (Lambon Ralph 

& Patterson, 2008; Patterson, Nestor, & Rogers, 2007) based on neuropsychological and 

neuroimaging findings. It is possible that the information from modality-specific systems 

is converged and abstracted away from the perceptual or motoric symbols to form 

supramodal symbols along two streams. This might explain why the left middle temporal 

gyrus and superior temporal sulcus, which are located between the two terminals, play 

important roles in distinguishing abstract and concepts (Chapter 3), and are suggested to 

be more associated with the retrieval of concrete or abstract knowledge respectively 

(Chapter 4).  

The two terminals of the two streams are likely to serve different functions. The 

left angular gyrus binds semantic information from multiple sensorimotor modalities, 

whereas the roles of left anterior temporal lobe can be multifold: this area is crucial for 

the triggering of detailed properties of concepts, and it may also “captures the semantic 

similarities among concepts” (McClelland & Rogers, 2003), both of which facilitate the 
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Figure 6.1 An illustrative hypothetical model of neuroanatomical systems involved in 

conceptual representation. The blue circles indicate systems processing modality-specific 

information. The yellow arrows indicate the streams along which information from 

various sources are abstracted away from the original modalities or formats. The red 

circles indicate supramodal systems severing different roles as labeled. 

 

representation of semantically abstract concepts.  

It should be noted that the inferences of the localization of semantic categories 

were about the net, averaged effects on a coarse scale, rather than localizing semantic 

concepts onto anatomy. Neural activity occurs on a scale that is not measureable by the 

functional imaging techniques discussed in this dissertation, but multivariate patterns 

strongly suggest that concept-sensitive regions are widespread and overlap across 

different concepts. The preference of an area to certain categories of concepts does not 

indicate the exclusiveness of either the function of the area, or the neural substrates of the 

concepts.  

In general, the current findings suggest widespread involvement of multiple 

systems in conceptual representation. Modality-specific systems are the integral parts for 
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semantic representation. The extent to which modality-specific systems are involved in 

conceptual representations depends on the importance or salience of properties. The 

supramodal processing is critical for representing abstract concepts. Perceptual and motor 

information may also receive fine-grained processing and is abstracted to supramodal 

symbols, depending on the task requirements. 

6.2. Future directions 

6.2.1. From association to necessity 

The MVPA approaches avoid the problem of reverse inference (Poldrack, et al., 

2009) while being powerful to detect small effects. However, as a neuroimaging data 

analysis method, MVPA per se does not answer the question of the necessity for the 

neural substrates to task performances. This leaves some issues about representational 

differences of abstract vs. concrete concept unanswered, for example, whether the 

concreteness effect will be diminished if the modality-specific representation is 

unavailable? Behavioral measurements combined with techniques such as TMS may add 

important further information to the necessity question and the specific roles of neural 

correlates for conceptual representation. 

6.2.2. Mechanisms underlying the fine-grained conceptual representation 

Research on the organizational patterns of concepts may inspire the investigation 

on the causes of such organizations. For instance, in the context of overlapping and 

distributed patterns of conceptual representation, what drives objects from the same 

domain to be close together is a question worth pursuing. The domain-specificity found 

in certain regions has been proposed to emerge from their connectivity to other systems 

that may play a critical role in the representation of the concepts (Mahon & Caramazza, 
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2011). Further investigation on both the anatomical and functional connectivity 

associated to conceptual representation will help testify these assumptions. 

In spite of the progress in functional localization of knowledge representation, how 

individual concepts, particularly concepts in the abstract domain, are processed in the 

brain is far from clear. Based on the findings from multivariate pattern analysis, the 

distinct patterns of activation within certain cortical regions may partly account for the 

representation of various concepts. Behavioral and neuropsychological studies have 

shown that our knowledge about objects or abstract entities can also be organized by 

themes such as goals, plans, and situations (Crutch and Warrington 2005). The similarity-

based multivoxel pattern analysis is a powerful tool to establish the representational 

neighbors of concepts, which may further offer implications to the organizational 

principles of concepts in the neural space. These approaches may also help the 

investigation of the specific roles of supramodal areas in concepts processing. 

Previous studies have focused on the differences between abstract and concrete 

concepts by contrasting the processing of concepts with extreme high and low 

concreteness. This approach is effective to locate the representational differences, but 

insensitive to how the differences occur. Abstractness and concreteness are by definition 

two ways to express the same continuum based on the two ends of it. The explanation of 

identified areas relies on reverse inference, which is vulnerable to misinterpretation in the 

face of multiple plausible options and the insufficient understanding about the identified 

brain regions.  

One alternative is to rethink the relations between abstract and concrete concepts 

based on the general views on conceptual knowledge representation as a whole. For 
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example, the strong embodied view suggests the grounding nature of conceptual 

knowledge including the abstract concepts. Considering the relatively better understood 

neural substrates of concrete objects and modality-specific systems, it might be 

informative to investigate whether and how these systems function or disconnect to the 

concepts with increasing abstractness. 

Introducing the amodal conceptual system has been considered as uninformative 

expedients by proponents of radical embodied cognition. A possible approach to the 

representation of abstract concept along the embodiment view is through conceptual 

metaphor (Lakoff & Johnson, 1999). Recent behavioral studies have found supporting 

evidence on concepts with medium abstractness. For example, processing verbs such as 

rush and respect is found to activate image schemata of horizontal or vertical spatial 

relations (Richardson, Spivey, Barsalou, & McRae, 2003). The speed of processing 

sentence describing object or information transfer has been found to be modulated by the 

consistency of the direction of physical movement of participants with the direction of 

transfer implied in the sentence, and the sentence processing has also been found to be 

affected by activity in the hand muscles (Glenberg & Kaschak, 2003; Glenberg et al., 

2008), suggesting the association between the concept transfer and literal movement is 

not merely the structural similarity between domains of concepts. However, the grounded 

representations may not be applicable to other abstract concepts, and the core of concepts 

like respect is more than a vertical relation.  

The cross-modal MVPA, as was illustrated by the study in Chapter 5, is a suitable 

tool to map the abstract concepts to concrete ones. For example, in research on 

numerical-spatial concept relations, the role of spatial patterns in number coding was 
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demonstrated by a recent study that predicted the numerosity of dot sets based on fMRI 

data in symbolic digits processing task (Eger et al., 2009). Another study showed the 

possibility of predicting mental addition vs. subtraction by training the classifier on data 

from a task of right vs. left eye movement (Knops, Thirion, Hubbard, Michel, & Dehaene, 

2009). The authors suggested the results as evidence in align with the conceptual 

mapping of small-to-large numbers onto left-to-right spatial patterns. Etzel and 

colleagues (2008) trained the classifier on activity patterns in the premotor cortex when 

participants heard sounds relating to hand or mouth actions, to predict the data when 

participants performed hand or mouth actions. These examples suggest a potential 

approach to addressing theoretical debates on embodied vs. amodal nature of cognitive 

processing. In summary, combining the new approaches of measurement and analysis 

with theoretical perspectives of linguistics and general cognitive models will be 

promising future directions to further understand the representation of semantic 

knowledge in the brain. 

6.3. General merits and contributions 

This dissertation provided new and converging evidence for the representational 

differences between abstract and concrete concepts from multiple perspectives. The 

differences in the representation of abstract vs. concrete concepts were found to be 

represented in a large number of single anatomical regions, as well as on the whole-brain 

level, and voxelwise connectivity patterns. The representational differences were 

suggested to occur at various levels, including the dependence on modality-specific 

perceptual systems, the organization of associations among different semantic-related 

systems, and the difficulty and strategy of retrieving contextual information. 
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Methodologically, this dissertation illustrates the applications of MVPA to investigating 

representation of semantic knowledge, based both on activation and condition-specific 

functional connectivity data. The findings could inform theories of semantic knowledge 

representation and understandings of functional anatomy of human brain.  
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